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Abstract

This thesis addresses the general problem of how to find globally consistent and accurate es-
timates of multiple-view camera geometry from uncalibrated imagery of an extended scene.
After decades of study, the classic problem of recovering camera motion from image corre-
spondences remains an active area of research. This is due to the practical difficulties of
estimating many interacting camera parameters under a variety of unknown imaging con-
ditions. Projective geometry offers a useful framework for analyzing uncalibrated imagery.
However, the associated multilinear models—the fundamental matrix and trifocal tensor—
are redundant in that they allow a camera configuration to vary along many more degrees
of freedom than are geometrically admissible.

This thesis presents a novel, minimal projective model of uncalibrated view triplets
in terms of the dependent epipolar geometries among view pairs. By explicitly model-
ing the trifocal constraints among projective bifocal parameters—the epipoles and epipolar
collineations—this model guarantees a solution that lies in the valid space of projective cam-
era configurations. We present a nonlinear incremental algorithm for fitting the trifocally
constrained epipolar geometries to observed image point matches. The minimal trifocal
model is a practical alternative to the trifocal tensor for commonly found image sequences
in which the availability of matched point pairs varies widely among different view pairs.

Experimental results on synthetic and real image sequences with typical asymmetries in
view overlap demonstrate the improved accuracy of the new trifocally constrained model.
We provide an analysis of the objective function surface in the projective parameter space
and examine cases in which the projective parameterization is sensitive to the Euclidean
camera configuration. Finally, we present a new, numerically stable method for minimally
parameterizing the epipolar geometry that gives improved estimates of minimal projective
representations.
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Chapter 1

Introduction

Computer vision is the study of computational methods for understanding visual imagery.

One of the earliest, most classic problems in computer vision is the question of how to

compute the 3D positions and orientations of a set of cameras using a single 2D image

taken from each camera. The classic approach to this problem is to measure points in

each image that represent the same point in the world and express their 2D locations in

terms of the unknown relative 3D camera poses. By modeling the physics and geometry of

image formation, researchers were able to find equations relating observed image points to

unknown camera and scene configurations. It was thought that the simple rearrangement

of these equations would give rise to straightforward methods for computing the 3D poses

of cameras. However, after several decades of research, the robust and accurate recovery of

camera poses from matching points in image collections is still an active area of research.

Meanwhile, the motivating applications have changed dramatically. The traditional

problems of egomotion recovery for mobile robotics and bundle adjustment for photogram-

metry are now accompanied by a range of new applications due to the increased ease of

acquiring, processing, and storing vast amounts of digital imagery and video. From artificial

intelligence to computer graphics, there is a range of application areas that require accurate

knowledge of the positions of cameras that have captured a set of possibly uncalibrated

imagery. Activity monitoring, vision-enhanced vehicle guidance, robotic and vision-guided

surgery, virtual world modeling, and 3D special effects in video are a few examples. While

these applications may call for a wide variety of methods and models for interpreting infor-
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mation about the scene being viewed, their performance often depends critically on having

an accurate model of the camera configuration.

The primary difficulty facing 3D camera and scene analysis is uncertainty in the match-

ing of image points across multiple views. Imaging noise, occlusions and disocclusions,

appearance changes, and limited fields of view, cause many potential image matches to be

unreliable. The fewer the number of reliably matched points viewed in two cameras, the

more difficult it is to accurately compute the relative 3D camera positions. When a set of

images covers an extended scene using traditional cameras, whether it be a collection of sta-

tionary cameras placed around a common scene or a single video camera capturing frames

as it moves within an environment, many view pairs have only small regions of overlap in

their fields of view. Furthermore, frames that do overlap may have markedly different views

of the scene, making it difficult to locate matching scene points. This asymmetry in view

overlap exacerbates the problem of computing a precise, globally consistent representation

of a camera collection. This thesis addresses the problem of finding globally consistent

relative pose estimates of uncalibrated cameras with sparsely overlapping fields of view.

1.1 General Thesis Contributions

The primary contribution of this thesis is a new approach to modeling and estimating the

geometry of three uncalibrated views. We introduce a new projective parameterization of

three views in general position that uses the trifocal lines to constrain all pairwise projective

parameters. The parameterization is a minimal representation of an uncalibrated view

triplet, meaning that the number of free parameters does not exceed the geometric model’s

physical degrees of freedom. From the geometric and algebraic constructions of the trifocally

constrained model, we devise an algorithm for computing the minimal projective geometry

of a view triplet from dependent pairwise projective relations. We show that this model

is empirically valuable when there is an asymmetry in the availability of reliable point

matches between the three view pairs, a common scenario in practical applications. The

minimal parameterization guarantees that the model is theoretically consistent in that it

corresponds to a unique projective camera configuration. Furthermore, the minimality of
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the formulation is numerically favorable because it allows optimizations of the projective

parameters to be done in a space of lowest possible dimensionality. Finally, the model may

be fit to all the available data since it may be evaluated on either point matches across

view pairs or across view triplets, a distinct advantage over trifocal models that are only

associated with point triplets. The advantages of this approach are demonstrated on both

synthetic and real image sets that exhibit common asymmetries in the availability of reliable

point correspondences.

In addition, this thesis examines the relationship between the minimal parameters that

define the projective geometry of view pairs and the shapes of the objective functions typi-

cally used to fit projective geometric models to image data. By analyzing the ambiguities

in mappings between points in the projective parameter space and their Euclidean coun-

terparts and considering their effective constraints on image point locations, we show that

regions of uncertainty in projective parameter space have strong implications for the conver-

gence behavior of nonlinear optimizations. In particular, we look at commonly encountered

camera configurations that are nearly degenerate cases for the general camera model and

propose a new method for choosing geometrically well-behaved minimal parameterizations

that ensure desirable numerical behavior during optimization. We conclude by sketching

the use of asymmetric minimal parameterizations for analyzing the geometry of arbitrarily

many views.

1.2 The Basic Problem: From Images to Cameras

The input to the problem is a collection of 2D images of a scene viewed from different

3D positions. The 3D relationship between the set of scene points relative to the set of

camera positions is assumed to be a rigid Euclidean transformation. Points are measured

in multiple images by an image matching or tracking algorithm. The image point matcher

determines where a scene point has moved from one frame to the other and returns the

pair of 2D coordinates of the two matched image points, also called a point correspondence.

Given many images, a point matching procedure may return pairs, triplets, or n-tuples of

corresponding image points for any given scene point. Once the point matching algorithm

11



has computed the locations of matching image points, the remaining unknown values are the

relative camera positions, the intrinsic camera properties, and the scene point locations. If

the matched image points are treated as noisy measurements, the true 2D image projections

of the viewed scene points may be added to the set of unknowns. Given a set of measured

image point correspondences, the general problem of 3D camera analysis is to compute the

3D location and 3D orientation of each camera at the moment that its image was captured,

also known as the external or extrinsic parameters, and the amount of scaling, skewing, and

shifting that each individual camera applies to its image points, also known as the internal

or intrinsic parameters. This work addresses the intermediate step of fitting a projective

geometric model to uncalibrated imagery before proceeding to a Euclidean analysis of the

internal and external parameters.

camera center

image plane

optical ray

scene point

image point

Figure 1-1: The pinhole camera model for image formation.

The basic geometry of imaging is traditionally modeled as a perspective projection via

the pinhole camera model. An optical ray is defined as the ray originating at the camera’s

optical center, passing through the image plane at the 2D image point, and intersecting

the 3D scene point (Figure 1-1). In the case of uncalibrated imagery, each image point

undergoes an additional 2D affine transformation due to the intrinsic camera parameters.

The transformation from scene points to image points can be modeled by a simple set

of equations involving the position of a 3D scene point, the external and internal camera

parameters, and the 2D image point coordinates. When several cameras view the same scene
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point, the perspective projection equations are all coupled through the 3D coordinates of

the scene point. These equations are useful for recovering unknown quantities from known

quantities. If the camera parameters and scene point positions are already known, then

the equations dictate exactly where the 2D matching image points must be. Conversely,

in the classical problem of 3D camera analysis the positions of matching image points are

known, and the equations provide constraints on the 3D configuration of the scene points

and cameras.

Historically, the problem of recovering camera geometry, or motion, has been coupled

with that of finding the 3D positions of scene points, or structure. This problem has been

studied in the photogrammetry domain [4] and in computer vision as the structure from

motion problem [30, 50]. This thesis focuses on the problem of estimating relative camera

geometry from uncalibrated images, a task that provides a necessary starting point for many

structure from motion procedures.

To estimate camera geometry directly from point matches, we make use of relations

that constrain matching image points in terms of the camera poses. These constraints

are naturally expressed in terms of relative camera poses. Even the known multiple-view

constraints on n-tuples of points—the trifocal, quadrifocal, and multilinear tensors—only

encode relative relations between selected view pairs. Only when an estimate of 3D scene

structure is known can the scene points be used to define a global coordinate system that

couples all cameras simultaneously. However, to estimate scene structure, a fairly accurate

initial estimate of relative camera positions is necessary. This is the focus of our work.

1.3 Projective Minimal Models

This thesis addresses several related difficulties in 3D camera analysis. The first is the

problem of finding a globally consistent model of multiple cameras. Since the camera infor-

mation directly recoverable from image points expresses pairwise relations, it is possible to

estimate each camera pair’s relative pose independently of all others by using only matching

points between pairs of views. The danger of this strategy, as depicted in Figure 1-2, is that

three independent camera pair relations are not necessarily consistent with a meaningful
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global camera configuration.

??

Figure 1-2: Three independent pairwise camera relations are not necessarily consistent with
a single global camera configuration.

When the physical cameras are available for internal calibration by positioning a known

3D calibration pattern in each camera’s field of view, the task may be reduced to a Eu-

clidean 3D camera analysis problem known as multiple baseline stereo. While still a difficult

problem, global consistency may be enforced via the transitive properties of 3D translations

and rotations. When the original cameras are not available, and the calibration informa-

tion is unknown, as is commonly the case when analyzing an arbitrary collection of images,

Euclidean consistency may not be enforced.

When the image collection is not calibrated, the projective framework offers a powerful

machinery for analyzing 3D camera positions. In this framework, constraints on matching

image points are expressed as projective relations among pairwise cameras. These relations

are expressed in terms of geometric structures that couple the external and internal camera

parameters and carry valuable information about the Euclidean configuration. Though

powerful, the projective setting presents a second difficulty that this thesis addresses, that

of finding a globally consistent projective representation of the camera geometry. To be

globally consistent, a projective model must have only as many independent parameters

as are allowable by the degrees of freedom allowable in the system. We call such models

minimal projective representations.

The final difficulty addressed by this thesis is a common practical scenario when many

cameras view an extended scene. Due to occlusions, noise, and the limited fields of view

of typical cameras, not all cameras will view the same set of scene points. While those

camera pairs with significant view overlap will provide an image matcher with many easily
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matched points, other pairs with less overlap will have only a few good point correspondences

(Figure 1-3). Furthermore, for three or more views it is often much harder to find triplets

or n-tuples of points, than it is to find matched point pairs across two views at a time. This

practical issue of asymmetric view overlap makes it difficult to use matching image points

between all view pairs to reliably estimate the relative positions of all cameras.

Figure 1-3: The number and reliability of point matches between some view pairs is greater
than between other view pairs. The two consecutive view pairs have greater view overlap
than the non-consecutive pair.

1.4 View-Based Constraints

Throughout this thesis, we make heavy use of view-based constraints on matching image

points, that is, constraints that involve only image points and camera positions, not 3D

scene points. In the pinhole camera model, each optical ray contains the camera center,

the image point, and the scene point (Figure 1-1). The basic constraint on two views of

a scene point is that two optical rays through matching image points must intersect at a

single scene point. This relation may be simply stated by requiring that the two optical

rays be coplanar. If each optical ray is expressed as the ray joining the unknown camera

center with the known 2D image point, then the so-called coplanarity constraint guarantees

that they intersect at single 3D scene point (Figure 1-4). The coplanarity constraints on all

pairs of matching points between two views give rise to a set of equations that involve only

the relative camera positions and image point coordinates, without explicitly involving the

3D scene point.

For three views of a scene point, all three optical rays must intersect at a single 3D
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scene point

camera centercamera center

optical ray optical ray

common plane
image point image point

Figure 1-4: Two optical rays through matching image points must be coplanar.

scene point

camera centercamera center

optical ray optical ray

image point image point

camera center

image point

optical ray

Figure 1-5: Three optical rays through matching image points must intersect at a single
scene point.

point (Figure 1-5). Again, this may be written as a view-based constraint that does not

involve the scene point. The advantage of these view-based expressions of optical ray

intersections is that the unknown scene point locations are eliminated from the equations

and therefore estimates of camera positions may be separated from estimates of scene point

depths. These expressions give rise to error functions that evaluate how well a model of the

camera geometry explains the measured image matches. Finally, since these expressions

involve only incidence relations among points, lines, and planes, they are defined in both

the Euclidean framework traditionally used for calibrated imagery, and in the projective

framework that we will use for analyzing uncalibrated imagery.
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1.5 Projective Representations

In a typical imaging device, the properties of the camera lens and the imaging plane or

CCD cause an effective offset, scaling, and shearing transformation of the image points

after perspective projection. When the intrinsic camera properties are known, this affine

transformation may be inverted to rectify the image points to a scene-based coordinate

frame. This is called the calibrated case, and it permits the imaging process to be modeled

in a Euclidean framework. When the intrinsic properties are not known, the Euclidean

model is not applicable. In the projective framework, the perspective projection of 3D scene

points composed with the 2D affine transform of their 2D projections are treated as a single

projection of the 3D projective space onto the 2D projective plane. This embedding of the

Euclidean space containing cameras, scene points, and image points into a projective space

preserves incidence relations among points, lines, and planes. These incidence relations allow

the view-based constraints on image points to be expressed without explicit knowledge of

the internal parameters.

In the projective setting, camera relations are described by parameters that depend

jointly on the unknown internal parameters and on the 3D external rotations and trans-

lations. However, the projective constraints on observed image points may be defined

entirely in terms of the 2D images. These projective parameters—the epipoles and the

transformation of the epipolar pencil—directly constrain the locations of matching image

points, so they may be computed from measured correspondences. Once the projective rela-

tions among cameras are established, it is often possible to recover the internal parameters

without knowledge of a calibration pattern [10, 51, 26]. Using the internal parameters, a

projective representation may be projected back into the Euclidean setting.

The accurate estimation of projective parameters is thus a useful first step in the analysis

of uncalibrated imagery. However, the projective representation allows certain freedoms in

the camera model that are not physically realizable because they do not enforce metric

properties such as distances and angles. While a Euclidean camera and scene model is

defined up to an arbitrary 3D rigid transformation, a projective camera model is defined

up to an arbitrary 3D projective transformation. The greater the error in image point

measurements, the more the accuracy of a projective model is likely to be corrupted, as for
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any over-parameterized model.

This thesis aims to exploit the usefulness of projective relations while enforcing consis-

tency within the projective framework in order to overcome practical issues of view overlap

asymmetry in image sequences.

1.6 Specific Thesis Contributions

This work addresses a fundamental problem in 3D camera analysis: given multiple uncali-

brated views of a scene, compute an accurate estimate of the relative camera geometry, for

delivery to a bundle adjustment or structure from motion procedure, or any other system

requiring initial knowledge of camera locations. We present a new theoretical framework

for using epipolar geometry estimates between certain view pairs to constrain the relations

between other view pairs. The model guarantees a minimal parameterization of a view

triplet, which is the minimal set of views required to perform self-calibration, the unsu-

pervised recovery of intrinsic camera properties relations [10], and the relative scaling of

camera baselines.

We present a new estimation procedure for the model and give experimental evidence

of its improved accuracy for camera pose estimation in practical imaging scenarios with

asymmetric view overlap. The minimal trifocal model may be used in a wider context to

perform projective bundle adjustment or to interleave camera estimation with scene point

estimation or image point re-estimation.

We analyze the objective function defined on the minimal parameter space for two or

three views and examine its behavior on image point matches. We examine sensitive camera

configurations and show the existence of numerically unstable regions in the parameter

space. We present a novel generalized parameterization of the two-view and three-view

projective relations that avoids numerical instabilities and present empirical evidence of its

accuracy for estimation.

The theoretical impact of this work is that it models three views in general position using

the minimal allowable degrees of freedom and view-based, projective constraints. Estimates

of the trifocally constrained epipolar parameters are guaranteed to satisfy all geometric
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dependencies and therefore correspond to an admissible projective camera configuration.

1.7 Thesis Outline

Chapter 2 introduces the projective camera model, derives the known projective constraints

on two, three, or arbitrarily many views, describes the relationship between multilinear

tensors and minimal parameter sets, and reviews related work on fitting projective camera

models to image collections.

Chapter 3 presents the new minimal parameterization of three views. It describes the

geometric dependencies among epipolar parameters, namely the restriction of epipoles to

trifocal lines and the fixed point of the epipolar collineation given by the trifocal line. Using

the key observation that trifocal lines may be expressed using only knowledge of the epipolar

geometry between two view pairs, we proceed to construct a trifocally constrained minimal

model of the epipolar relations among all view pairs in a triplet.

Chapter 4 presents a procedure for fitting the minimal model from Chapter 3 to matching

points in a view triplet via nonlinear optimization. It presents experimental results using

synthetic and real image sequences with asymmetric overlaps in their fields of view. The

minimally parameterized estimation procedure is shown to improve the accuracy of the

epipolar geometry between two views with very few reliable point matches.

Chapter 5 examines the shapes of the objective function for the epipolar parameters,

revealing regions of uncertainty in the projective parameter space that can potentially trap

searches. Experimental results on both synthetic and real imagery are presented, showing

how false minima are more likely to be encountered for certain camera configurations.

Finally, this chapter presents a generalization of the epipolar geometry parameterization

that avoids degeneracies by automatically choosing a stable parameterization of the epipolar

transformation.

Chapter 6 discusses issues of robustness, degeneracy, and the applicability of this work

to arbitrarily long sequences.
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Chapter 2

Multiple View Geometry

This chapter provides the theoretical background for modeling multiple views of a scene

in the framework of projective geometry. Starting from the pinhole camera model, we

describe the coplanarity constraints between two uncalibrated views in terms of the epipoles

and the transformation of the epipolar pencil, also called the epipolar collineation. We

derive a known minimal parameterization of the epipolar geometry and its relation to the

fundamental matrix [5, 53, 9]. We refer to the resulting minimal parameter set as the

epipolar parameters. These form the building block of the remainder of the thesis. We briefly

describe the trifocal tensor that constrains matching point triplets and its generalization

to the multilinear tensors for arbitrarily many views. We conclude by reviewing existing

methods for camera and scene understanding using projective analysis.

2.1 One View

2.1.1 Camera Model

Throughout most of this work, the perspective projection of a 3D scene point onto a 2D

image plane is modeled using projective geometry and the pinhole camera model. An

image plane is represented by the projective plane IP2, defined as the real Euclidean plane

IR2 augmented by a line at infinity. The 3D world is represented by the three-dimensional

projective space IP3, defined as the real Euclidean space IR3 augmented by a plane at infinity.

For a thorough exposition on projective geometry applied to computer vision, see [8, 21].
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(x,y,z) Tm

prprojective plane

Figure 2-1: The projective plane IP2 embedded in IR3. A point m in the projective plane
is represented in homogeneous coordinates by any nonzero scalar multiple of the vector
(x, y, z)T .

Points in a projective space are represented by homogeneous coordinates, that is, they are

defined only up to a nonzero scale factor. An intuitive way to understand this representation

is to consider the two-dimensional case of the projective plane. Figure 2-1 depicts the

projective plane IP2 embedded in IR3. The point mIP2 is associated with the set of all scalar

multiples of the real vector mIR3 = (x, y, z)T . All the members of this family intersect the

projective plane at a single point, so we write the point in homogeneous coordinates as

mIP2 � (x, y, z)T , where the notation � implies equality up to scale. The same applies to

points in IP3: a scene point is written in homogeneous coordinates as MIP3 � (X,Y,Z,W )T .

Given a 2D or 3D point defined in Euclidean coordinates, we embed it in a projective

space by the simple mapping,

mIR2 =


 x

y


 → mIP2 �




x

y

1




MIR3 =




X

Y

Z


 → MIP3 �




X

Y

Z

1




.

The subscripts denoting real or projective coordinates are omitted throughout the rest of
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this work, and quantities defined by � are assumed to be projective. A point whose last

coordinate is equal to 0 is a point at infinity in the projective space, e.g. (x, y, 0)T ∈ IP2

and (X,Y,Z, 0)T ∈ IP3 are points at infinity. The origin of IP2 is (0, 0, 1)T and the origin of

IP3 is (0, 0, 0, 1)T .

The pinhole camera model projects a scene point M ∈ IP3 through the camera’s optical

center C onto the image point m ∈ IP2. The perspective projection is expressed as a linear

projective transformation by the 3 × 4 camera matrix P :

m � PM. (2.1)

Any matrix representing a projective linear transformation is also defined only up to a

scale factor since the image of a projective point under the scaled transformation leaves its

homogeneous coordinates unchanged. It is often convenient to partition the camera matrix

as P � [P p], where P is a 3 × 3 matrix and p is a 3-element column vector. The next

section describes the form that a matrix P must take to represent a physical camera. The

optical center of the camera is defined as C ∈ IP3 such that PC = 0. We assume throughout

that the optical centers of the cameras are not at infinity. It can be shown [8] that under

this assumption, P is nonsingular, and the optical center has the form

C � [−P−1p, 1]T . (2.2)

A projective line in IP2 is represented by a 3-vector whose components are the coefficients

of the linear form defining it. For example, the projective line l that contains all projective

points m � (x, y, z)T such that ax+ by + cz = 0 is represented in homogeneous coordinates

as l � (a, b, c)T . The equation of the line is lT m = 0. Any nonzero multiple of l defines

the same set of points and hence the same line. There is a dual relationship in IP2 between

points and lines.

Similarly, a projective plane in IP3 is represented by a 4-vector representing its linear

form. The plane Π containing all points M � (X,Y,Z,W )T such that AX + BY + CZ +

DW = 0 is represented in homogeneous coordinates as Π � (A,B,C,D)T , and the equation

of the plane is ΠTM = 0. There is a dual relationship in IP3 between points and planes.
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The line l∞ � (0, 0, 1)T is called the line at infinity and contains all the points at infinity

in IP2. The plane Π∞ � (0, 0, 0, 1)T is called the plane at infinity and contains all the points

at infinity in IP3.

2.1.2 Internal and External Parameters

The camera projection matrix can be factored into its intrinsic and extrinsic parameters as

P � A[R T], (2.3)

where the effect of a camera’s intrinsic properties on the imaging process is modeled by the

affine transformation,

A �




fx s cx

0 fy cy

0 0 1


 . (2.4)

The matrix A models 5 intrinsic parameters. The parameters fx and fy, the focal length

of the camera measured in pixel units along the two coordinate axes of the camera’s image

plane. These may be distinct when a digital camera’s vertical and horizontal sampling rates

differ. The value s models the angle θ between the image plane’s two coordinate axes by

s = cos(θ). The intersection of the camera’s optical axis with the image plane is defined

in Euclidean coordinates as the principal point, (cx, cy)T , and typically lies near the center

of the image. For many cameras, the focal lengths are equally scaled along both axes, so

fx = fy and the axes are orthogonal, so s = 0.1 Many cameras often induce an additional

radial distortion of the image that is nonlinear in the image coordinates which may be

corrected [39, 49].

The Euclidean rotation and translation of the scene’s global coordinate system relative to

the camera’s local coordinate frame are defined by a rotation matrix, R, and a translation

matrix, T, each having 3 degrees of freedom. Therefore, every additional camera adds

1Although in this case there are 3 rather than 5 free internal parameters, the joint effects of the internal
and external parameters on image points are not separately observable in uncalibrated imagery.
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5 + 3 + 3 = 11 degrees of freedom to the configuration.

The transformation m � A[R T]M from scene coordinates to image coordinates is

thus decomposable into a 3D rigid Euclidean transformation followed by a nonrigid 2D

transformation of the image plane. If a camera has been calibrated off-line by carefully

measuring how a set of known 3D scene points are mapped to their 2D images, the inverse

of the matrix A may be used to transform measured image points so that the only unknown

parameters are the 3D rotations and translations. Unfortunately, this information is most

often not available, as only the raw images or video are provided.

In the projective model, projection matrices are treated in their unfactored form, P �

[P p]. Each additional camera still contributes 11 degrees of freedom, since a matrix P

has 12 components defined homogeneously up to a scale factor. In the following sections

we derive view-based geometric entities that capture these 11 degrees of freedom in a form

directly recoverable from matching image points measured in uncalibrated images. The

recoverable quantities are called projective parameters, or epipolar parameters for two views.

Section 2.6 outlines known methods for using projective parameters to obtain information

about the Euclidean camera geometry.

2.2 Two Views

This section examines the projective relations between two views. We give a geometric

derivation of the constraints on two matching image points in terms of two quantities, the

epipoles and the epipolar collineation. We show how to express the constraint as a bilinear

equation in the image point coordinates using the fundamental matrix. We show how to

derive a minimally parameterized description of the epipoles and the epipolar collineation,

also called the epipolar parameters. Finally, we show the explicit relationship between the

epipolar parameters and the fundamental matrix.

2.2.1 Geometry of Two Views

Consider two camera views denoted by the indices j and k, with optical centers Cj and Ck.

Each optical center is projected into the other view’s image plane at a distinguished point
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called the epipole, denoted by ejk and ekj, respectively, as shown in Figure 2-2. When

a point M in the scene is seen in both views, it is projected along the two optical rays

< Cj ,M > and < Ck,M > to the two corresponding image points mj and mk. The point

M lies on both optical rays, and the triplet < Cj, Ck,M > defines a plane called the epipolar

plane.

e

CC

e

mm j

jk

j

k

kj

k

M

jkF

lj lk

Π

Figure 2-2: The geometry of two views. The two optical rays < Cj,M > and < Ck,M >
define the epipolar plane Π. The projection of the epipolar plane into an image is an epipolar
line.

An important geometric construct for understanding the relationships between view

pairs is the epipolar line through an image point m. It is the projection of the epipolar

plane containing the scene point M into an image plane. The epipolar line may also be

thought of as the projection of one camera’s optical ray into the other camera’s image plane.

Note that by construction, every epipolar line passes through the epipole in that image.

The one-parameter family of planes containing the line through Cj and Ck is called the

pencil of epipolar planes. It induces a family of epipolar lines in each image called the

epipolar pencil. Figure 2-3 depicts how the projection of each epipolar plane into an image

is an epipolar line. The transformation that maps a line in the epipolar pencil of one image

to its corresponding line in the other image is called the epipolar transformation. A pencil

of lines in IP2 is projectively equivalent to the projective line IP1 [9]. Therefore, the epipolar

transformation may be viewed as a collineation, an invertible transformation of IP1 that is
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ejk kCjC ekj

Figure 2-3: The pencil of epipolar planes and the corresponding pencils of epipolar lines
in two views. A pair of epipolar lines in views j and k are in correspondence through the
epipolar collineation if they are images of the same epipolar plane.

completely defined by three matching points, or in this case by three matching lines of the

epipolar pencils [8]. We will also refer to it as the epipolar collineation between two views.

The epipoles and the epipolar collineation together form what is called the epipolar

geometry of two views. They are jointly determined by the rotation between two views, the

direction of translation between two views, and the intrinsic parameters of each view. They

completely define the relative geometry of two uncalibrated views within the projective

framework. To describe angles and distances, it is necessary to calibrate the views and

move to the Euclidean framework. In the remainder of this work, we will refer to the

minimum set of parameters that describe the epipoles and the epipolar collineation as the

epipolar parameters.

2.2.2 Algebraic Constraints on Point Pairs

The relation between a pair of matching points in two images that is determined by the

epipolar geometry of the two views may be captured as a multilinear relationship using the

fundamental matrix. The fundamental matrix expresses the coplanarity constraint defined

in Figure 1-4 as the transformation of a point mj in one image to the epipolar line in the

other image, the line through the epipole that contains the corresponding point mk. This
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section derives the algebraic form describing this mapping, known as the epipolar constraint,

in terms of the fundamental matrix, and shows its relation to the epipolar parameters.

Let two views of a scene, view j and view k, have camera projection matrices Pj �

[Pj pj ] and Pk � [Pk pk], respectively. Since the epipole is the image in one view of

the other camera’s optical center, we can express it by substituting the optical center in

Equation 2.2 into the camera projection equation, Equation 2.1:

ejk � PjCk � −PjP−1
k pk + pj (2.5)

ekj � PkCj � −PkP−1
j pj + pk. (2.6)

Now let mj ∈ IP2 and mk ∈ IP2 be the images of a scene point M ∈ IP3 in each camera’s

image plane:

mj � [Pj pj]M

mk � [Pk pk]M.

We wish to obtain an expression relating these matching points via the epipolar transfor-

mation. This expression will both define the fundamental matrix and illustrate its relation

to the epipoles and epipolar collineation.

We use the fact that in homogeneous coordinates, a projective line may be expressed

as the cross-product of any two of its points. Let the notation [.]× denote the matrix that

performs the same linear operation as the cross-product.2 Then the epipolar line containing

mj and ejk is written as

lj � ejk × mj � [ejk]×mj (2.7)

(2.8)

2The cross product of a vector v = (v1, v2, v3)T with another vector u may be written as a linear

transformation v × u = [v]×u, represented by the antisymmetric matrix [v]× =

[
0 −v3 v2

v3 0 −v1

−v2 v1 0

]
.
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and likewise the epipolar line through mk and ekj is

lk � ekj × mk � [ekj]×mk. (2.9)

To map lj to lk, we use the fact that the 4×3 transpose PT of a camera matrix performs

the inverse projection of a line l in an image to an entire scene plane via the expression

PT l [9]. The epipolar plane is the inverse projection of either epipolar line, so we can write

it as

Π � PT
j lj.

Π is a 4-vector representing the equation of the plane (Section 2.1.1), so its dual in IP3 is

a projective point. Its projection in view k is the dual of the epipolar line,

lk � PkΠ � PkPT
j lj. (2.10)

Writing the composition of the inverse and forward projections as the 3 × 3 matrix

Hjk � PkPT
j , (2.11)

we obtain an algebraic form for the epipolar transformation that maps epipolar lines from

view j to view k:

lk � Hjklj . (2.12)

The 3 × 3 matrix Hjk is not a unique representation of the epipolar transformation. Any

matrix of the form Hjk + ejkaT , where a is any 3-vector, also maps lj to lk. The next

section gives alternate representations of the epipolar transformation.

To obtain a constraint on the matching points mj and mk using the epipolar trans-

formation, substitute the expressions of the epipolar lines from Equations 2.7 and 2.9 into
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Equation 2.12 to obtain

[ekj ]×mk � Hjk[ejk]×mj

mT
k Hjk[ejk]×mj = 0.

The fundamental matrix is defined as

Fjk � Hjk[ejk]×, (2.13)

and the epipolar constraint on matching points is written as

mT
k Fjkmj = 0. (2.14)

This equation is satisfied by two points in images j and k that are images of the same 3D

scene point. The fundamental matrix thus maps a point from view j to its epipolar line in

view k [17, 7].

By taking the transpose of Equation 2.14, we obtain an equivalent epipolar constraint

with the roles of j and k swapped, mT
j FT

jkmk = 0, so we have the relation Fkj � FT
jk.

The fundamental matrix may also be expressed directly in terms of the internal pa-

rameter matrices and the Euclidean rotations and translations by expanding the epipole

and epipolar transformations (Equations 2.5, 2.6, and 2.11) using the factored projection

matrix in Equation 2.3. This form is presented in the discussion on projective-to-Euclidean

mappings in Section 4.2.

Note that the 9 components of Fjk have only 7 degrees of freedom. The fact that the

fundamental matrix is defined only up to a nonzero scale factor accounts for one less degree of

freedom. In addition, it is clear from Equation 2.28 that the two epipoles belong to the right

and left null spaces of the fundamental matrix, Fjkejk = 0 and eT
kjFjk = (Fkjekj)T = 0.

Therefore, the fundamental matrix is nonsingular, so the constraint det(Fjk) = 0, a third-

order constraint on the components of the fundamental matrix, accounts for the other

missing degree of freedom.

The 3 × 3 fundamental matrix has only 7 degrees of freedom: its components must
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satisfy two constraints. First, it is defined only up to a nonzero scale factor. Second,

it is a singular matrix. It is clear from Equation 2.13 that Fjkejk = 0, so the epipole

belongs to the null space of the fundamental matrix. The next section presents a minimal,

7-parameter representation of the epipolar geometry that corresponds to a decomposition

of the fundamental matrix into its free parameters.

2.2.3 The Epipolar Parameters

This section shows how the epipolar geometry may be described by 7 free epipolar pa-

rameters, namely the 2 free parameters of each of the epipoles and the 3 free parameters

of the epipolar collineation. We show how these parameters express the coplanarity con-

straint in terms of the epipolar transformation, and how they may be used to decompose

the fundamental matrix into its minimally parameterized form [9].

lj j
p

j
q

ejk
xlj

Figure 2-4: The epipolar pencil through ejk and its intersection xlj with the transverse line
< pj ,qj >.

Let hjk denote the function mapping epipolar lines from view j to view k. When

treating the epipolar lines as members of a pencil, we will express hjk as a homogeneous

2 × 2 matrix, Hjk2×2 that operates on the epipolar pencil. To express the epipolar pencil

as a one-parameter family, first define a transverse line in view j that does not contain the

epipole ejk by using two arbitrary points pj and qj. Now identify each epipolar line in view

j with its point of intersection xlj with the transverse line (Figure 2-4). Analogously, in

view k, choose two points pk and qk that form a line not containing the epipole ekj. An

epipolar line in view k is represented by its intersection xlk with the transverse line.

The point xlj (resp. xlk) may now be expressed as a linear combination of the basis

points pj and qj (resp. pk and qk). An epipolar line lj is thus defined by the coefficients
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αj and βj of its intersection point xlj :

xlj � lj × (pj × qj)

� (lTj qj)pj − (lTj pj)qj ,

so

xlj � αjpj + βjqj , (2.15)

where

αj = lTj qj (2.16)

βj = −lTj pj . (2.17)

These coefficients may be written as the homogeneous coordinates xlj � [αj , βj ]T of a point

on a projective line. Similarly, in view k, the coordinates of the point xlk representing lk

are

αk = lTk qk (2.18)

βk = −lTk pk, (2.19)

and

xlk � αkpk + βkqk. (2.20)

We can now write the epipolar collineation as a homogeneous matrix

Hjk2×2 �


 a b

c d


 (2.21)

that maps corresponding epipolar lines to each other by transforming their coefficients as
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follows:

Hjk2×2


 αj

βj


 �


 a b

c d





 αj

βj


 �


 aαj + bβj

cαj + dβj


 �


 αk

βk


 .

Expressed as an equality, we have

αk

βk
=

aαj + bβj

cαj + dβj
, (2.22)

so

a(αjβk) + b(βjβk) − c(αjαk) − d(βjαk) = 0. (2.23)

This form is the minimally parameterized representation of how the epipolar collineation

maps epipolar lines. Each epipolar line is represented as a member of it respective epipo-

lar pencil by two homogeneous coordinates, [αj , βj ]T (resp. [αk, βk]T ), and the epipolar

transformation is represented by its four homogeneous components. The practical issues

that arise from this minimal parameterization of the epipolar geometry are discussed in

Section 5.4.

Now that we have a parameterized representation of the epipolar pencil, we can express

the epipolar constraint on matching image points in terms of the minimal set of epipolar

parameters. Again, let mj and mk be matching points in views j and k lying on their

epipolar lines, lj and lk, respectively. Now substitute the expressions for the epipolar lines

from Equations 2.7 and 2.9 into Equations 2.16 to 2.19 to obtain the following expressions

for xlj � [αj , βj ]T and xlk � [αk, βk]T in terms of the point matches,

αj = (ejk × mj)Tqj = qT
j [ejk]×mj (2.24)

βj = −(ejk × mj)Tpj = −pT
j [ejk]×mj (2.25)

αk = (ekj × mk)Tqk = −mT
k [ekj ]×qk (2.26)

βk = −(ekj × mk)Tpk = mT
k [ekj]×pk. (2.27)

These α’s and β’s represent the epipolar lines as members of their epipolar pencil.
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Substituting them into Equation 2.22, we get the expression,

(mT
k [ekj]×pk)a(qT

j [ejk]×mj) + (mT
k [ekj]×pk)b(−pT

j [ejk]×mj)

−(−mT
k [ekj]×qk)c(qT

j [ejk]×mj) − (−mT
k [ekj]×qk)d(−pT

j [ejk]×mj) = 0.

By factoring out the points mj and mk and the epipoles ejk and ekj, we simplify this

equality to the standard form of the epipolar constraint on matching pairs of image points,

mT
k Fjkmj = 0, where now the fundamental matrix is decomposed as,

Fjk � [ekj ]×[pk qk]


 a b

c d





 qT

j

−pT
j


 [ejk]×. (2.28)

This expression, due to [9], shows how the fundamental matrix depends precisely on

7 epipolar parameters that describe the epipolar geometry: 2 parameters for each epipole,

and 3 parameters for the epipolar collineation (Figure 2-5).

ejk kCjC ekj

j
l

l
j

l
k jk

( )h

Figure 2-5: The 7 projective parameters defining the epipolar geometry, 2 for each epipole,
ejk and ekj and 3 for the epipolar collineation hjk. Two lines, lj and lk, are in correspon-
dence through hjk if they lie in the same epipolar plane (see Figure 2-3).

This decomposition is not unique. There are infinitely many 7-parameter decomposi-

tions, all corresponding to the same fundamental matrix, depending on how the epipoles’

homogeneous coordinates are normalized and on the basis chosen for the epipolar pencils.

The next section describes a particular set of instantiations of this parameterization, and

Section 5.4 explores the geometric implications of the various parameterization choices.
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2.2.4 Canonical Parameterizations

Equation 2.28 expresses the fundamental matrix in terms of a collineation Hjk2×2 that

depends on an arbitrary choice of basis points, pj , qj , pk, and qk. Since there are infinitely

many choices of basis points, there are infinitely many possible parameterizations of the

epipolar geometry.

Csurka, et al. give a finite set of parameterizations of the fundamental matrix, each

corresponding to a different normalization component for the epipoles and the epipolar

collineation [5]. We show here how these parameterizations are equivalent to restricting

the representations of the epipolar pencil by limiting the basis points to a set of canonical

values,

ε1 � [1, 0, 0]T (2.29)

ε2 � [0, 1, 0]T (2.30)

ε3 � [0, 0, 1]T (2.31)

The resulting parameterizations are useful in practice because they permit the epipolar

collineation to be immediately observable from a given fundamental matrix.

First choose the indices to be used for normalizing the two epipoles: ζj = [j1, j2, j3]T

and ζk = [k1, k2, k3]T . Let j3 be the index of ejk chosen for normalization, i.e., ejk(j3) = 1,

and let j1 and j2 denote the other two indices (j1 < j2). Now assign the points pj and qj

using the canonical basis elements εj1 and εj2:

pj � (−1)(j3)εj1 (2.32)

qj � (−1)(j3)εj2. (2.33)

For view k, let k3 be the index of ekj for normalization, so ekj(j3) = 1, and k1 and k2 be

the other two indices (k1 < k2). Let

pk � −(−1)(k3)εk2 (2.34)

qk � (−1)(k3)εk1 . (2.35)
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Now by substituting these values into the parameterization in Equation 2.28, we can

verify that the components of the collineation are components of the fundamental matrix:

a = Fjk(k1, j1) (2.36)

b = Fjk(k1, j2) (2.37)

c = Fjk(k2, j1) (2.38)

d = Fjk(k2, j2). (2.39)

We will refer to the parameterizations that use canonical basis points for the epipolar

pencil as canonical parameterizations. The next section instantiates a particular canonical

parameterization that is used in later chapters.

2.2.5 The Canonical Parameterization

As an example of a canonical parameterization, choose the epipole normalization indices to

be j3 = 3 and k3 = 3, so ejk = (e1, e2, 1)T and ekj = (e′
1, e

′
2, 1)T . Then (j1, j2) = (1, 2) and

(k1, k2) = (1, 2), so

pj � (−1)3ε1 = (−1, 0, 0)T

qj � (−1)3ε2 = (0,−1, 0)T

pk � −(−1)3ε2 = (0, 1, 0)T

qk � (−1)3ε1 = (−1, 0, 0)T .

Note that these are points at infinity, so the transverse line is in fact the line at infinity,

parameterized by the points at infinity in the horizontal and vertical directions. Substituting

these values into Equation 2.28, we obtain a formula for Fjk in which the parameters of the

collineation, {a, b, c, d}, are immediately observable:

Fjk � [ekj]×




0 −1

1 0

0 0





 a b

c d





 0 −1 0

1 0 0


 [ejk]×
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� [ekj]×




−d c 0

b −a 0

0 0 0


 [ejk]×

�




a b −(ae1 + be2)

c d −(ce1 + de2)

−(ae′
1 + ce′

2) −(be′
1 + de′

2) (ae1 + be2)e′
1 + (ce1 + de2)e′

2


 .

Since the collineation is defined only up to scale, we represent it using only 3 parameters

by defining the indices ζc = [c1, c2, c3, c4]T into hjk, the unrolled vector form of Hjk2×2, and

then normalizing Hjk2×2 by the cth
4 component of hjk, so hjk(c4) = 1.

This particular choice of normalization indices and epipolar collineation bases gives us

the minimal parameterization used in [5] and [53]. We will often refer to it as the canonical

parameterization.

2.2.6 Summary

This section has given a description of the epipolar geometry in terms of 7 epipolar param-

eters,

p7
jk = {ejk(j2), ejk(j3), ekj(k2), ekj(k3),hjk(c1),hjk(c2),hjk(c3)}. (2.40)

that depend on a set of index vectors ζj, ζk, and ζc. In addition, we have established

procedures for decomposing a fundamental matrix Fjk into 7 minimal parameters, and

vice-versa, for constructing a fundamental matrix from a parameter set p7 and three index

vectors.

To make sure the parameterization is well-defined, we require that j3 and k3 be chosen so

that ejk(j3) �= 0 and ekj(k3) �= 0. Likewise, c4 must be chosen so that hjk(c4) �= 0. There are

three ways of choosing each epipole’s normalization component, j1 = 1, 2, 3 and k1 = 1, 2, 3,

and four ways of choosing the collineation’s normalization component, c4 = 1, 2, 3, 4, for a

total of 3 × 3 × 4 = 36 possible canonical parameterizations.

While a collineation may in general be represented by any two basis points, the finitely
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many choices given by the canonical basis points lead to analytical expressions for extracting

the collineation components directly from a fundamental matrix by observation.

Since there are multiple parameterizations, the mapping from Fjk to p7
jk is one-to-many.

Although in theory, all parameter sets give the same error on matching data points, the

manifolds of these parameter sets are not identical, so the optimization of an objective func-

tion over the parameters may have distinctly different behavior depending on the chosen

representation. Statistical methods have been studied for choosing the most numerically

favorable normalization indices at any given iteration. In [5], the normalization indices

are chosen to maximize the rank of the Jacobian of the function from Fjk to p7
jk. Chap-

ter 5 presents a more general parameterization that allows an arbitrary choice basis for the

epipolar collineation.

Various forms of the epipole-collineation parameterization of view pairs have been used

in fundamental matrix estimation and in projective bundle adjustment [2]. The new minimal

model of three views presented in Chapter 3 will be constructed from the dependencies that

exist between collections of these epipolar parameters for different view pairs.

2.3 Three Views

This section presents existing models for the geometry of three uncalibrated views. First,

we construct the trifocal relationships geometrically. Then we show how point triplets are

constrained by the trifocal geometry, first using the trifocal tensor, and then directly in

terms of the pairwise epipolar parameters, when the optical centers and scene point are in

general position. This framework sets the stage for the minimally parameterized trifocal

model introduced in Chapter 3.

2.3.1 Geometry of Three Views

Given three views i, j, and k from cameras whose optical centers are in general position,

what constraints exist on the triplet of matching image points, mi, mj, and mk correspond-

ing to a single 3D point in terms of the camera configuration? Figure 2-6 illustrates that

if three image points are in correspondence across the three views, then their optical rays
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Figure 2-6: The geometry of three views.

must intersect at a single point M in the scene. The plane containing the three optical

centers Ci, Cj, and Ck is called the trifocal plane, and its intersections with the three image

planes are called the trifocal lines, ti, tj, and tk, as shown in Figure 2-7

The following sections present two different algebraic representations of the trifocal

geometry and the constraints it places on matching points in three views. First we present

the trifocal tensor and its associated trilinear constraints on point triplets. The trifocal

tensor is a convenient algebraic tool for modeling view triplets, but we will see that its

linear solution is not sufficiently constrained, i.e., there is a lower-dimensional nonlinear

manifold embedded in its linear solution space on which the true solution must lie.

As an alternative to the trifocal tensor, the trifocal geometry may be modeled as three

instances of the epipolar geometry when the camera centers lie in general position. It will

be important to note the dependencies among the three fundamental matrices, since they

will be used in different forms in Chapter 3 to model three views with a minimal collection

of epipolar parameters.
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2.3.2 Algebraic Constraints on Point Triplets

The previous sections showed how two images of a point are constrained by the 7 epipolar

parameters, and how they define the epipolar geometry. Whereas the fundamental matrix

that corresponds to these epipolar parameters provides a bilinear expression for the con-

straints that the epipolar geometry imposes on matching point pairs, the trifocal tensor

provides an analogous constraint on matching point triplets.

The trifocal tensor trilinearly relates triplets of both points and lines, where a point

in one image is considered to match any line in another image that contains its matching

point. The trifocal tensor is a 3× 3× 3 array that captures the constraints on point triplets

or line triplets or combinations of points and lines. Its 27 components are coefficients of

a set of trilinear expressions in the projective coordinates of image points or lines. These

coefficients are not independent: they must satisfy constraints that constrain the tensor to

lie on on an 18-dimensional manifold of admissible values [12]. However, the tensor is an

attractive model for view triplets since its elements may be recovered by linear methods

from matching image triplets.
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The Line Triplet Constraint

Let us first describe the trifocal tensor as a constraint on line matches, since its immediate

corollaries provide constraints on matching point triplets [18, 13]. Let Pi, Pj, and Pk be

the three projection matrices of three cameras with distinct optical centers. Without loss

of generality, choose a coordinate system such that, Pi � [I 0], and partition the other two

projection matrices as Pj � [Pj pj ] and Pk � [Pk pk].

Lli lk

lj

im

mj

mk

M

Figure 2-8: The geometry of three views of a line.

Let li, lj, and lk be corresponding lines in each of the three camera images, i.e., images

of a single line L in space (Figure 2-8). Note that there is an entire plane in IP3 whose image

is li, and the same is true for the other two cameras. These planes may be represented as a

back-projection of the image lines and written purely in terms of the camera matrices and

line coefficients. The requirement that these three planes intersect in a unique line may

thus be stated in terms of the image lines and the camera matrices. The resulting relation

between image lines may be rearranged as a mapping T jk
i that, given a pair of lines lj and

lk from views j and k, returns the corresponding line li in view i:

li � T jk
i (lj , lk) �




ljTG1
i lk

ljTG2
i lk

ljTG3
i lk


 (2.41)

The notation T jk
i often refers to the 3 × 3 × 3 trifocal tensor whose three slices are the
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three matrices G1, G2, and G3. The 27 components of the tensor slices are the coefficients

of products of the line components. The three matrices were originally derived in the

Euclidean framework as constraints on point triplets [38], and much later reformulated as

a single trilinear tensor [37].

Taking the cross product of each side of Equation 2.41 with li gives a set of three

multilinear equations in the line components which can be rearranged into a homogeneous

system of linear equations in the 27 elements of the tensor T jk
i :

li ×




ljTG1
i lk

ljTG2
i lk

ljTG3
i lk


 = 0.

The Point Triplet Constraint

From the trilinear constraints on lines we can immediately move to a set of trilinear con-

straints on points, by first deriving the constraints on a point-line-line match, i.e., a point

in one image and a line in each of the other two images that contains the corresponding

image point. The point-line-line form directly follows from the fact that a point m on the

line l must satisfy mT l = 0, so if M is a point on the line L of the scene, and its image in

camera i is the point mi lying on li, then

mT
i li = mT

i




lTj G1
i lk

lTj G2
i lk

lTj G3
i lk


 = 0. (2.42)

This equation is trilinear in the image coordinates of the lines lj and lk and the point mi.

To derive the relationship between the components of three corresponding image points,

mi, mj, and mk, use the three basis vectors, ε1, ε2, and ε3, defined in Section 2.2.4. We can

construct lines containing the matching points by defining lj � εm ×mj and lk � εn ×mk,

for any choice of m,n ∈ {1, 2, 3}. Any such pair of lines may be back-projected into the

scene to two planes that intersect to form a unique line L. The image of L in view i

must contain the point mi, so we have a point-line-line match. Substituting lj and lk into
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Equation 2.42 gives us a set of 9 trilinear equations (for all choices of m and n) in the

elements of the three corresponding image points:

mT
i




(εm × mj)TG1
i (εn × mk)

(εm × mj)TG2
i (εn × mk)

(εm × mj)TG3
i (εn × mk)


 = 0. (2.43)

Of these equations, four are linearly independent and are known as the trilinearities given

by Shashua in [37].

Thus, the trifocal tensor is a linear model constraining point triplets. As mentioned

earlier, its 27 components are algebraically related through their dependence on the camera

projection matrices, so they must satisfy constraints that restrict the tensor to only 18

degrees of freedom. Enforcing these constraints has proved challenging and remains an

active area of research [13].

2.3.3 Trifocally Constrained Fundamental Matrices

In this section, we ask two questions. First, under what conditions do the three fundamental

matrices between view pairs impose the same constraints on matching points as the trifocal

tensor? And secondly, under what conditions do the three sets of epipolar parameters

contain the same information about the geometry of the cameras as does the trifocal tensor?

First note that the three fundamental matrices in a triplet are interdependent. The

dependencies may be stated algebraically by treating the image locations of one camera

center in each of the two other views as a matching point pair that must satisfy the epipo-

lar constraint. The entries in Table 2.1 state all three permutations of this relationship.

Chapter 3 presents alternate formulations of these dependencies for the purpose of deriving

minimally parameterized trifocal models. These forms, expressed in terms of the trifocal

lines, provide geometric methods for constraining the set of all epipolar parameters among

the three pairs in a view triplet.

When the three optical centers are in general position, the three epipolar constraints

completely encapsulate the relations among matching point triplets. A point in one view

must lie on two different epipolar lines, one for each of the other two views. The intersection
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eT
ijFkiekj = 0 eT

ikFjiejk = 0
eT

jkFijeik = 0 eT
jiFkjeki = 0

eT
kiFjkeji = 0 eT

kjFikeij = 0

Table 2.1: The dependencies among three fundamental matrices in a view triplet.

of the two epipolar lines completely determines the point’s image position (Figure 2-9).

This construction is identical to the point transfer property of the trifocal tensor, so the

tensor offers no additional constraints on the three image points. The collection of epipolar

parameters is therefore sufficient for modeling the trifocal geometry of three cameras in

general position.

ije eik

m i

Figure 2-9: Two epipolar lines corresponding to two matched points in other images intersect
at the third matched point.

2.3.4 Special Cases

The three epipolar geometries fail to constrain images of scene points that lie in the trifocal

plane. In this case, the two epipolar lines for a given point correspondence coincide since

they are identical to the trifocal line. Fortunately, it is unlikely in practice that all points

viewed in a scene happen to lie on the trifocal plane.

When the three optical centers are collinear, the trifocal tensor places stronger con-

straints on point correspondence than the epipolar geometry does. For a collinear triplet

of cameras, the three epipolar planes for any scene point are identical, so a point’s epipolar

line with respect to one view coincides with the epipolar line with respect to the other view.

Figure 2-10 depicts this scenario: point transfer from two views to a third is no longer possi-

ble using only the epipolar relations since there are no longer two epipolar lines intersecting
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at a unique point in the third view. The trifocal tensor, however, does constrain all three

points in this case.

2.4 N Views

The generalization of the bifocal and trifocal constraints to N -focal projective constraints

on image points across arbitrarily many views has been mathematically derived but is not

commonly used in practice [6, 22, 45]. A simple algebraic formulation of these constraints

begins with the N projection equations (Equation 2.1) that describe N views of a scene

point:

mi = λiPiM, i = 1, 2, ...N.

When taken simultaneously, these may be rearranged into various systems of linear equa-

tions. Early work in multiple-view structure from motion for orthographic cameras rear-

ranged this system into a factorizable matrix of camera properties and scene structure [41].

To obtain constraints on image points in terms of camera properties, the equations are
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rearranged to form the homogeneous system of equations,




P1 m1 0 . . . 0

P2 0 m2 . . . 0
...

...
...

PN 0 . . . 0 mN







M

−λ1

−λ2
...

−λN




= 0.

The minors of this rank-deficient matrix are multilinear constraints on matching image

points, and the 3N coefficients of these forms are the elements of a multilinear tensor, the

N -view analog of the 9-dimensional fundamental matrix and the 27-dimensional trifocal

tensor [45]. It turns out that the set of equations given by this tensor offer no additional

additional constraints on matching image points than does the full set of trilinearities derived

from the trifocal tensor for all possible triplets in the collection [21]. Furthermore, the

suggested methods for extracting camera geometry from the multilinear tensor involve first

determining the epipoles and fundamental matrices [46]. For these reasons, it has not been

necessary to use the multilinear tensor in practice as a tool for estimating camera geometry.

2.5 Degrees of Freedom

Until now we have avoided the important concept of a “minimal” parameterization, i.e.

a representation of the camera configuration that permits only the geometrically plausible

degrees of freedom. For two uncalibrated views, we saw that there were 7 degrees of freedom.

For N views, there are 11N − 15 degrees of freedom: each camera may be described by the

elements of its 3× 4 projection matrix minus a single scale factor, providing 11 parameters,

and the entire configuration is defined up to a 3D projective transformation, which has

4x4 components defined up to scale, and thus 15 degrees of freedom. Alternatively, we can

think of each camera as being defined in terms of its 3D position (3 parameters), its 3D

rotation (3 parameters), and its intrinsic camera parameters (5 parameters) for a total of

11 parameters for each additional view.

Since there are only 11N−15 degrees of freedom in a view collection, and 3N components
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in a multilinear tensor, the tensor components are clearly algebraically dependent. The

linear solution to the unknown tensor components given a set of point matches across

N views will not be guaranteed to lie in the true space of admissible descriptions of the

configuration. There are 3N −(11N−15) constraints relating the tensor elements which must

somehow be enforced if a solution is to correspond to a projective camera configuration.

For 2 views, there are established methods for projecting the 9 homogeneous compo-

nents of a fundamental matrix onto a 7-dimensional space of admissible solutions [19, 53].

For 3 views, there has been work on forcing the 27 redundant coefficients of the trifocal

tensor to lie in the 18-dimensional space of admissible solutions by defining and enforc-

ing 9 independent nonlinear constraints among the tensor coefficients [13]. Other methods

minimally parameterize the trifocal tensor in terms of a set of actual image data points

that are thought to be well-matched [43]. For 4 or more views, the exponentially many

constraints on multilinear tensors have been derived algebraically, but they are redundant

and nonlinear, and methods for enforcing them are not yet well-established [47].

2.6 Projective Structure and Motion

The geometry of multiple views has been modeled as a collection of epipolar relations by

several others. Laveau, et al. use collections of fundamental matrices to implicitly represent

3D surfaces via novel view prediction [24]. Rothwell, et al. demonstrate how a projective

3D camera representation may be constructed from two uncalibrated views by finding the

family of projection matrices that agree with an estimated fundamental matrix [34]. More

generally, Luong, et al., describe how this family may be normalized to define a minimally

parameterized set of projection matrices in the projective framework [28].

The relations between multiple views have also been modeled as collections of trifocal

tensors [16]. However, the resulting collection of three-view models is not globally consistent,

so additional steps must be taken to minimize the disagreement between different camera

pairs.

The factorization approach to projective structure and motion recovery is a generaliza-

tion of the image factorization work of [41]. Sturm and Triggs [40] present a projective
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extension of this work, along with an N -view model of multiple views called the “joint

image.” This method estimates the epipolar geometries for an entire collection along with

the depths of all the observed points, and requires a set of measured image points that is

visible in all views.

Bundle adjustment is a procedure for optimizing the 3D rotations and translations of

many cameras while simultaneously estimating the 3D positions of scene points viewed in

multiple images [4]. The bundle being adjusted for a given set of image matches is the

set of optical rays originating at the current estimates of camera optical centers, passing

through the image points, and ideally intersecting at a single 3D scene point. The algorithm

alternates between computing the positions of 3D scene points given the current camera

poses, and minimizing the distances of the projected image points to the measured point

matches by adjusting the 3D camera rotations and translations. The procedure must be

initialized with reasonably accurate Euclidean parameters if it is to converge to the global

optimum.

Bundle adjustment may be performed in the projective framework as well as in the

Euclidean framework. Camera centers, scene points, optical rays, image planes, and image

points are defined projectively, and optical rays are now adjusted to intersect at a unique

3D projective point. Bartoli, et al. minimally parameterize the camera projection matrices

in terms of the epipoles and epipolar transformations [2]. The 3D solutions to camera and

scene positions are defined only up to an arbitrary projective transform. For a recent review

of these methods, see [48].

2.7 Summary

This projective geometric framework for modeling multiple views is the basis for the model

presented in the next chapter. Starting from the minimal representation of two views given

here, we will derive the constraints on epipolar geometries in a view triplet and construct a

new minimal representation of three views that guarantees consistency among all pairwise

relations.
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Chapter 3

Minimal Trifocal Model

This chapter presents a new minimal projective model of view triplets that enforces trifocal

constraints on all pairwise epipolar geometries. The trifocally constrained collection of

epipolar geometries performs the same role as the trifocal tensor when all three cameras

lie in general position. Both models encode information about the 3D projective relations

among views. However, the three pairwise epipolar geometry estimates express constraints

on point pairs as well as on point triplets, whereas the trifocal tensor requires point or line

triplets to be matched across three views. Since finding reliable matches across two views

is easier, there is often more data available for accurately estimating pairwise geometries.

The trifocally constrained triplet model presented here is minimally parameterized,

meaning there are no redundant degrees of freedom, and therefore the parameterization

guarantees a globally consistent projective model of the three cameras. Like the trifocal

tensor, it does not treat all three views symmetrically. Instead, it constrains one view pair’s

relation using the other two view pairs’ relations. When two views in a collection have

insufficient view overlap, their matching image points do not provide stable estimates of

the relative camera geometry. By constraining their relation to satisfy trifocal constraints

with respect to a third view, a more accurate, geometrically consistent estimate is possible.

Such a scenario is common for image collections covering an extended scene.

The minimal model represents the trifocal geometry in terms of what we will call the

epipolar parameters—the minimally parameterized epipoles and the epipolar collineations—

between all three camera pairs. By construction, every point in the minimal parameter
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space corresponds to a geometrically feasible triplet of projective camera configurations. We

explicitly model the geometric dependencies among the epipoles and epipolar collineations

between all pairs in a view triplet to obtain a minimal 18-parameter representation of the

three-view configuration. The construction of the minimal parameter space dictates an

incremental optimization technique for estimating trifocal geometry: first, two independent

minimal 7-parameter epipolar geometries are fit to matching point pairs measured across two

of the view pairs. Next, the 4 parameters of the third pair’s dependent epipolar geometry

are fit to point matches across the third pair. When there is asymmetry in the available

image point matches between view pairs, this minimal model offers improved accuracy in the

epipolar geometry estimates, and consequently improves the initial estimates of Euclidean

rotation and translation that are needed for any application requiring initial knowledge of

the 3D camera poses.

3.1 Trifocally Dependent Epipolar Parameters

When three cameras have optical centers in general position in space, the trifocal geometry

is completely described by the three sets of consistent pairwise epipolar geometries. As

shown in Section 2.3.3 (Table 2.1), the dependencies between the three epipolar geometries

may be described algebraically in terms of the fundamental matrices. We now construct the

geometric dependencies among the three epipolar geometries and make several key obser-

vations that will motivate the trifocally constrained model and the procedure for minimally

parameterizing a view triplet.

Suppose that the epipolar geometries of view pairs (i, j) and (i, k) are known. These

two relations are independent in the absence of any other information. What can be said

about the epipolar geometry of view pair (j, k) given these two known relations?

Recall that the trifocal plane is the unique plane containing all three optical centers,

and its projection into each image is a trifocal line (Figure 3-1). The trifocal lines are the

structures that bind all three epipolar geometries. The basic observation that links the

epipolar and trifocal geometry is that the trifocal lines are epipolar lines for all three view

pairs. To see this for view pair (j, k), simply treat the optical center Ci of view i as an
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Figure 3-1: The trifocal plane Θ is defined by the three optical centers, < Ci,Cj ,Ck >.
Each trifocal line is the projection of the trifocal plane into the image plane. It is also an
epipolar line for each of the two other views.

arbitrary scene point in space. Then the trifocal plane is an epipolar plane for the pair

(j, k), and its projection into each image, tj and tk, is an epipolar line. This brings us to

the first observation.

Observation 1 Given a view triplet, the two epipoles in any one view must lie on the

trifocal line in that view.

This is clear from Figure 3-1. We express this observation algebraically for all three

views by the forms,

ti � eij × eik (3.1)

tj � eji × ejk (3.2)

tk � eki × ekj. (3.3)

The second observation again treats the trifocal lines as epipolar lines.
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Observation 2 Given a view triplet, any two trifocal lines are images of each other under

the epipolar collineation, the transformation of the epipolar pencil.

For now, we will simply state this observation abstractly1 for each view pair as

ti � hji(tj) (3.4)

ti � hki(tk) (3.5)

tj � hij(ti) (3.6)

tj � hkj(tk) (3.7)

tk � hik(ti) (3.8)

tk � hjk(tj) (3.9)

(3.10)

.

We make one final observation that will be useful in practice when fitting parameters

to view triplets.

Observation 3 Given only the epipolar geometries between 2 pairs, (i, j) and (i, k) of a

view triplet, the trifocal lines in views j and k are completely determined.

We state this using the simple property that the fundamental matrix maps a point in

one image to its matching point’s epipolar line in the other image. In Figure 3-1, eik and

ejk may be treated as a matching point pair since they are both images of the point Ck,

so the fundamental matrix Fij maps eik to its epipolar line in view j, which is simply the

1Recall the notation for the epipolar collineation:
hjk(·) abstract function that maps an epipolar line from view j to view k
Hjk 3 × 3 matrix representing the projective linear transformation that maps the 2D

projective lines lj ∈ IP2 to lk ∈ IP2

Hjk2×2 �
[

a b
c d

]
2 × 2 matrix representing the projective linear transformation that maps a line in the

epipolar pencil in view j, represented as a point xlj on a projective line to a line in the
epipolar pencil in view k, represented as a point xlk on a projective line

hjk � [a, b, c, d]T unrolled vector form of Hjk2×2
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trifocal line tj. Stating this for all permutations of i, j, and k, we obtain,

ti � Fjiejk (3.11)

ti � Fkiekj (3.12)

tj � Fijeik (3.13)

tj � Fkjeki (3.14)

tk � Fikeij (3.15)

tk � Fjkeji. (3.16)

We have thus derived the geometric dependencies among the three epipolar geometries

in a view triplet. The next section uses these relations as constraints on the epipolar param-

eters, and by explicitly modeling those constraints, constructs a minimal parameterization

of three views.

3.2 Construction of the Minimal Parameters

This section constructs a minimal set of parameters that describes the trifocal geometry

using the dependent epipolar parameters between all the pairs in a view triplet. Suppose we

are given three views, {i, j, k}, and let p7
ij , p7

ik, and p7
jk be the epipolar parameters between

each view pair, as defined in Equation 2.40. The 21-parameter union of these three sets

must have dependent elements since a view triplet has only 18 projective degrees of freedom.

By explicitly enforcing the geometric constraints among these parameters in terms of the

trifocal lines, we will construct a minimal 18-parameter projective model of three views.

The approach is to partition the full set of epipolar parameters into two sets, one set of

independent variables and one set of dependent variables. The dependent variables will be

directly computable from the independent variables, and the union of the two sets will form

a geometrically consistent set of epipolar parameters.

Suppose that the epipolar geometry for two view pairs (i, j) and (i, k) is known, so we

have established the parameters p7
ij and p7

ik. In the absence of all other information, these

two parameter sets are independent, so they account for 14 degrees of freedom in the camera
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configuration. However, since three views have a total of 18 projective degrees of freedom

(Section 2.5), there are 4 degrees of freedom remaining to describe the epipolar relation

between views j and k.

We seek a parameterization p4
jk to express this relation. The key insight to defining the

full epipolar geometry with only 4 parameters is to first construct trifocal lines in views j

and k using Observation 3:

tj � Fijeik

tk � Fikeij

The fundamental matrices Fij and Fik are directly computable from the minimal parameter

sets p7
ij and p7

ik using the construction in Equation 2.28.

Now that the trifocal lines are known, Observation 1 requires that ejk and ekj must lie

on tj and tk respectively, so each epipole is only free to vary along its trifocal line. We use

this fact to express each unknown epipole by a single projective parameter on the trifocal

line.

Choose two points on tj and express the epipole ejk as their linear combination. If the

coordinates of the trifocal line in view j are tj = [tj1, tj2, tj3]
T , then it must contain the

points,

xj = [0,−tj3, tj2]
T (3.17)

yj = [−tj3, 0, tj1]
T . (3.18)

Therefore, we can express the epipole by the single parameter γj such that

ejk � γjxj + yj. (3.19)

Likewise, the trifocal line tk = [tk1, tk2, tk3]T contains the points,

xk = [0,−tk3, tk2]
T (3.20)

yk = [−tk3, 0, tk1]
T . (3.21)
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so the epipole ekj may be parameterized by the single parameter γk such that

ekj � γkxk + yk. (3.22)

For any γj (resp. γk), we can reconstruct the coordinates of the epipole, given the trifocal

line tj (resp. tk). This construction, depicted in Figure 3-2, will be used in the procedure

given in Chapter 4 for estimating the single epipole parameter along a known trifocal line.

jt

jx

jy
jjjjk yxe �� �

jã

Figure 3-2: The epipole ejk lies on the trifocal line tj, parameterized by the scalar γj.

There are two remaining degrees of freedom left to describe the epipolar geometry for

view pair (j, k). The epipolar collineation hjk, which in general has 3 degrees of freedom,

must therefore be constrained to have only 2 free parameters. According to Observation 2,

the trifocal line must satisfy

tk � hjk(tj).

This constraint treats the trifocal line as an epipolar line and therefore as a member of

the epipolar pencil. It gives us a single match for the epipolar collineation, depicted in

Figure 3-3.

To use the trifocal line match as an explicit constraint on the parameters that define the

epipolar collineation, we will use the same construction as in Section 2.2.4. Represent the

epipolar collineation as a transformation of the projective line by defining a transverse line

in each view. As depicted in Figure 3-4, we let < pj ,qj > and < pk,qk > be the transverse

lines in views j and k, respectively, and write each transverse line’s intersection with the

trifocal line as a point on a projective line,

xtj � [αj , βj ]T
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)( jjkk tht �
jt

jke kje

Figure 3-3: The trifocal lines tj and tk are in correspondence via the epipolar collineation.

xtk
� [αk, βk]T ,

where Equations 2.24 to 2.27 now become

αj = tT
j qj (3.23)

βj = −tT
j pj (3.24)

αk = tT
k qk (3.25)

βk = −tT
k pk. (3.26)

ip

jq

jke

jt

kp

kq

kje

kt

jkh

ip

jq

jke

jt

kp

kq

kje

kt

jkh

Figure 3-4: The trifocal lines tj and tk, each represented as an epipolar line parameterized
by two basis vectors, are in correspondence via the epipolar collineation.
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The projective representations of the trifocal lines are related by the collineation pa-

rameters

hjk � [a, b, c, d]T ,

via Equation 2.23,

a(αjβk) + b(βjβk) − c(αjαk) − d(βjαk) = 0.

Defining the vector of coefficients

kT = [αjβk, βjβk,−αjαk,−βjαk]T , (3.27)

Equation 2.23 now becomes

kThjk = 0, (3.28)

a single linear equation in the components of the collineation.

To constrain the collineation to only 2 parameters, first choose a normalization index,

c4, and normalize the collineation components so that hjk(c4) = 1. Now choose an index

c3 to be the dependent parameter, hjk(c3). Express the dependent parameter in terms

of the two remaining ones, by computing the α’s and β’s for the known trifocal lines us-

ing Equation 3.23, and substituting these into Equation 3.28. Given the two collineation

components, hjk(c1) and hjk(c2), the remaining component is completely determined by

isolating hjk(c3) in Equation 3.28:

hjk(c3) = −hjk(c1)k(c1) + hjk(c2)k(c2) + k(c4)
k(c3)

. (3.29)

To ensure that this parameter is well-defined, it is necessary to examine the parameterized

trifocal line and choose the index set ζc = [c1, c2, c3, c4]T such that the cth
3 component of the

coefficient vector k is nonzero.

We have now parameterized the epipolar collineation by the two values hjk(c1) and

hjk(c2). These parameters together with the epipole parameters γj and γk define the set of
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4 parameters defining the geometry of the view pair (j, k):

p4
jk = {γj , γk,hjk(c1),hjk(c2)}. (3.30)

From this set, p7
jk is computable by using Equations 3.19 and 3.22 to construct the epipoles

ejk and ekj, and then using Equation 3.29 to define hjk(c3) and setting hjk(c4) = 1. We

now have a technique for minimally representing the projective relations among three views

as the union of two independent sets of epipolar parameters with one dependent epipolar

parameter set:

p18
ijk = p7

ij ∪ p7
ik ∪ p4

jk. (3.31)

3.3 Comparison to the Trifocal Tensor

This section briefly discusses the relationship between the trifocally constrained epipolar

geometries and the well-known trifocal tensor for projective modeling of view triplets.

Assume for now that the view triplet is not collinear, and suppose a scene point that

does not lie in the trifocal plane is matched across all three views. The trifocally constrained

epipolar geometries are sufficient to enforce the constraint that all three optical rays meet

at a single scene point. Using only the epipoles and the epipolar collineations, we can write

down the requirement that each image point in a matching triplet must lie at the intersection

of the two epipolar lines mapped from the other two image points into the current view.

This statement is a view-based expression of the triangulation constraint, that the three

optical rays through three imaged points must intersect in a single 3D point, the same

constraint expressed by the trifocal tensor. Consequently, the point transfer property of

trifocal tensors is also expressible in terms of the epipoles and collineations.

If the three sets of epipolar parameters are not consistent, then they do not properly

enforce the trifocal constraints on image points because they do not describe a physically

plausible camera configuration. Similarly, if a 3 × 3 × 3 trifocal tensor is not properly pa-

rameterized or if its coefficients are not forced to meet certain nonlinear constraints, then

it does not necessarily correspond to a unique projective camera configuration. From an
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applications perspective, the trifocal tensor is often used as an initial step for bundle ad-

justment or structure from motion, but the typical method for recovering a set of projection

matrices from the trifocal tensor requires extracting the epipoles from the trifocal tensor

to construct projection matrices. The minimal epipolar parameter set bypasses the tensor

computation and directly computes the epipolar geometries. It would be interesting to

compare the epipole accuracy obtained from the trifocal tensor to the estimate found by

directly fitting the trifocally constrained epipolar parameters.

In practice, the trifocal tensor is only recoverable when there are sufficient point matches

across all three views to constrain the trilinear equations. Often, there are many more pairs

of point matches measured between images than triplets. The trifocally constrained epipolar

parameter set allows the view triplet to be analyzed from only matching point pairs while

guaranteeing a legitimate camera configuration.

A degenerate configuration for the triplet of dependent epipolar parameters is the case

of collinear optical centers. Suggestions for detecting this case are discussed in Section 5.3

and Chapter 6.

3.4 Summary

This chapter has presented a model for the projective geometry of view triplets when the op-

tical centers are in general position. The geometric dependencies between all three pairwise

epipolar geometries in a view triplet were derived, and a new, minimally parameterized,

consistent set of epipolar parameters among three views was defined. The next chapter

presents an algorithm for estimating this model, and gives empirical examples of its im-

proved accuracy for estimating the geometry of view triplets.
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Chapter 4

Trifocally Constrained Parameter

Estimation

This chapter describes a procedure for estimating a minimal trifocal model for a view triplet

by imposing trifocal constraints on the triplet of epipolar geometries. The algorithm ini-

tializes the pairwise epipolar geometries of all three view pairs in a triplet using existing

linear and nonlinear methods. It then projects the initialized model onto the space of

trifocally constrained epipolar parameters, and performs an optimization in the minimal

space. Experimental results on image sequences whose image pairs have varying overlaps

in fields of view show that the trifocal constraints correct errors in estimates of epipolar

geometry from relatively few point matches. Chapter 5 analyzes the behavior of the objec-

tive functions evaluated over the minimal epipolar parameter space and offers a generalized

parameterization that handles sensitive camera configurations.

4.1 The 4-Parameter Algorithm

We now introduce a new minimally parameterized trifocal algorithm, which takes as input

a set of matching image points between pairs of views in a triplet of images and returns a

consistent set of epipolar parameters that describe the epipolar geometry between all three

view pairs. By consistent, we mean that the pairwise epipolar geometries satisfy all the

projective constraints described in Chapter 3, and hence correspond to a legal projective
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camera configuration. The main procedure is the 4-parameter algorithm: given reliable

estimates of the epipoles and epipolar collineations between two view pairs in a triplet,

p7
ij and p7

ik, it performs a nonlinear search for the optimal trifocally constrained epipolar

parameter set, p4
jk. These three sets comprise the minimal projective parameterization of

three views.

4.1.1 Initialization

To initialize the nonlinear search, obtain a starting point in the parameter space by using

the 8-point algorithm to fit a linear least-squared estimate of the fundamental matrix to

the matching image points in each view pair [19]. The 8-point algorithm returns the linear

least-squares solution to the error, ΣmT
j Fijmi, summed over all matching image points.

The RANSAC algorithm [15] for robust sampling is used to eliminate outliers from the set

of correspondences.

4.1.2 Extraction

For all view pairs, extract the epipolar parameters from the fundamental matrix using

the canonical decomposition described in Section 2.2.4. Choosing a set of of normaliza-

tion indices, decompose the fundamental matrix Fij into the epipolar parameters p7
ij =

{eij(i1), eij(i2), eji(j1), eji(j2),hij(c1),hij(c2),hij(c3)}, and likewise for Fik and Fjk.

For the two independent view pairs (i, j) and (i, k), perform a nonlinear optimization

over each parameter set, p7
ij and p7

ik, as described in [5]. Any objective function may be

used that expresses a constraint on matching image points in terms of projective relations.

We use the distance from each measured point to its epipolar line under the current model

of the epipolar geometry [53]. Details of this objective function are given in Section 4.1.4

and discussed further in Chapter 5. The function is only evaluated on the robust sample

of points found by the 8-point algorithm. A standard nonlinear least-squares optimization

algorithm such as Levenberg-Marquardt is used.
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4.1.3 Projection

Fix the optimized parameters, p7
ij and p7

ik, and construct the minimal set of trifocally

constrained epipolar parameters p4
jk = {γj , γk,hjk(c1),hjk(c2)} in Equation 3.30 from Fjk

as follows. First, define the initial epipoles to be the kernel of Fjk and project them onto

the trifocal lines to find the parameters γj and γk that satisfy Equations 3.19 and 3.22.

Then construct the collineation parameters by first extracting the collineation hjk directly

from the components of Fjk as shown in the example in Section 2.2.4. Using the chosen

normalization indices, keep only the two collineation values hjk(c1) and hjk(c2) to include

in the 4-parameter projection.

4.1.4 Optimization

Using the projected parameters p4
jk as an initial point, perform a nonlinear least-squares

optimization of the 4D parameter space by minimizing an objective function that measures

the fit of the current parameters to the measured image point correspondences.

The typical 2-view error function for estimating epipolar geometry sums the weighted

Euclidean distance from each image point in the data set to the epipolar line generated from

its matching point by the current epipolar geometry model. Let (mj,mk) be a matching

pair of points. The squared point-to-epipolar-line error for a point pair given the parameters

is defined as

e2
l (mj,mk;p4

jk,p
7
ij ,p

7
ik) = d2

l (mj, lj) + d2
l (mk, lk), (4.1)

where the epipolar lines are

lj � hkj(ekj × mk) � FT
jkmk � (l1, l2, l3)T

lk � hjk(ejk × mj) � Fjkmj � (l′1, l
′
2, l

′
3)

T

and the point-line distance is defined as [53]

d2
l (mj, lj) =

1√
l21 + l22

(mT
j lj)2
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d2
l (mk, lk) =

1√
l′1

2 + l′2
2
(mT

k lk)2.

For this to define the Euclidean distance, the points mj and mk are embedded in IR3 by

normalizing them by their third components.

At each iteration, the epipoles ejk and ekj and the collineation hjk are constructed from

p4
jk using the construction step given in the next section. The epipolar line lj may be rep-

resented as a point on the projective line, using Equations 2.18 and 2.19, and then mapped

to lk using Hjk2×2 and Equation 2.21. Alternatively, the fundamental matrix Fjk may be

constructed from the epipolar parameter set and applied directly to the projective line lj .

These are theoretically equivalent since the fundamental matrix is directly constructed from

the epipolar parameters. The objective function is the sum of this error over all point

matches between views j and k.

An alternate objective function may be used that operates on image point triplets and

represents the true reprojection error, that is, the distance from each measured image point

to its predicted position given the current model. The predicted image point in a view is

the intersection of the two estimated epipolar lines projected from the matching points in

the other two images:

e2
p(mj,mk;p4

jk,p
7
ij ,p

7
ik,mi) = d2

p(mj, ljmi
× ljmk

) + d2
p(mk, lkmi

× lkmj
), (4.2)

where dp is the Euclidean distance between points, and the epipolar lines may be computed

from either the collineations or the fundamental matrices:

ljmi
� hij(eij × mi) � Fijmi

ljmk
� hkj(ekj × mk) � Fkjmk

lkmi
� hik(eik × mi) � Fikmi

lkmj
� hjk(ejk × mj) � Fjkmj.

The disadvantage of this objective function is that it requires each point to be matched

across all three views, just as the trifocal tensor does, rather than using pairwise point
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matches which are in practice more readily available. Section 5.1 discusses several alterna-

tive objective functions.

4.1.5 Reconstruction

To reconstruct p7
jk from these p4

jk, first compute the epipoles from γj and γk using Equa-

tions 3.19 and 3.22. Then reconstruct the collineation by setting hjk(c4) = 1, and defining

the coefficients k using Equation 3.27 and Equations 3.23. Finally, compute the collineation

parameter hjk(c3) from Equation 3.29. We have now reconstructed p7
jk, a set of epipolar

parameters relating views j and k that is consistent with the other two sets of epipolar

parameters, p7
ij and p7

ik. The epipoles, epipolar collineations, fundamental matrices, and

trifocal lines constructed from this parameter set will satisfy all the constraints described

in Chapter 3.

4.2 Projective to Euclidean Conversion

The experiments in this chapter will compare the accuracy of projective parameter estimates

in the projective space as well as in terms of their physical effects on cameras. This is done

by mapping the epipolar parameters onto a set of Euclidean parameters using the intrinsic

parameters from in each simulation. Due to constraints on Euclidean quantities that do

not exist for projective quantities, such as the orthonormality of rotation matrices, this

projection is many-to-one. Here, we briefly discuss the issues surrounding this mapping

and refer to the more detailed analyses in the literature [32, 52].

In projective spaces, only incidence properties are defined, which may also thought of

as unions and intersections of projective subspaces, i.e., two points in a plane define a line,

three planes in space intersect at a point, etc.. There is no metric defined on the projective

space and hence no sense of orthogonality. To move to a Euclidean coordinate frame, the

internal camera parameters are needed.
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4.2.1 The Essential Matrix

The perspective projection equation in Equation 2.1 and the factored camera projection

matrix given in Equation 2.3 give us a factored representation of the pinhole camera model:

m � A[R T]M. (4.3)

Suppose the internal camera parameters are known for two views i and j related by the

unknown rotation R and unknown translation T, so a scene point M, written in the coordi-

nate frame of view j, is located at the point RM+T in the coordinate frame of view i. The

matrices Ai and Aj may be constructed from the internal parameters, and the two images

mi and mj of M may be calibrated by inverting the effects of the internal parameters. Let

m′
i and m′

j be the two calibrated image points,

m′
i � A−1

i mi

m′
j � A−1

j mj.

Working in calibrated coordinates, it is easy to show that the coplanarity constraint between

two views reduces takes the same form as in the uncalibrated case, except that now two

matching points are related by the matrix Eij such that

m′
jEijm′

i = 0,

and

Eij � [T]×R. (4.4)

This is called the essential matrix, due to Longuet-Higgins [25], and its relation to the

fundamental matrix is [11, 17],

Eij � AT
j FijAi. (4.5)
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This equality gives us a way of mapping a fundamental matrix to the essential matrix

given the internal parameters of both cameras. The essential matrix depends purely on

the relative 3D rotation and translation between the cameras, so obtaining a Euclidean

interpretation of the camera configuration is now a matter of factoring Eij into R and T.

We treat the essential matrix as a projective quantity defined only up to scale, so any scalar

multiple of T will satisfy the homogeneous equality in Equation 4.4. Therefore, it is only

possible to recover the direction of the translation from the essential matrix.

There are in fact two possible rotations that satisfy Equation 4.4. These two rotations,

combined with the two possible signs for the direction of translation give a total of 4 rotation-

translation pairs that correspond to a given essential matrix. To disambiguate between the

4 choices of rotation and translation direction, each configuration may be tested using one

image correspondence by projecting an optical ray outward from each camera center and

reconstructing the 3D scene point location. The reconstructed scene point will only be in

front of both cameras for one of the 4 choices.

Horn gives an exact method for extracting the rotation pair and translation direction

from a valid essential matrix [31]. In practice, however, an essential matrix that has been

computed linearly from observed image points will not necessarily satisfy Equation 4.4. It

is known that for Eij to be factorizable into a skew-symmetric matrix and an orthonormal

rotation matrix, it must have two nonzero singular values of equal magnitude and one zero

singular value [25].

A popular method for projecting an essential matrix into the space of admissible solu-

tions is to adjust its singular values to satisfy these constraints. Setting the smallest singular

value to 0 and forcing the 2 nonzero singular values to have equal magnitudes guarantees

that the essential matrix is associated with a unique pair of legal rotations and two opposite

translation directions. While this projection does not guarantee that the resulting essential

matrix is the optimal solution for the original image data, it is often used with success in

practice.
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4.2.2 Self-Calibration

Equation 4.5 offers a way to compute the essential matrix from the internal parameters, but

when working with uncalibrated imagery, these are not provided, and the original camera

rig is not available for off-line calibration with a known 3D pattern. Self-calibration or auto-

calibration is the problem of recovering the unknown internal camera patterns using only

the projective relationships between views. It has been shown that under certain conditions,

it is possible to recover the internal camera parameters by solving the Kruppa equations

from the fundamental matrices [10, 26]. For a complete review of self-calibration methods,

see [21].

4.2.3 Scaling Baselines

Given more than two views, the translation directions recovered from the pairwise essential

matrices may be simultaneously scaled to obtain a Euclidean representation of the camera

configuration defined up to a single unknown global scale factor. The multiple-view baseline

scaling algorithm given in [1] finds the set of pairwise scale factors that best satisfies the

constraint that all scaled baselines intersect at the optical centers.

4.2.4 Summary

The experiments in this work use the SVD projection of the essential matrix and the

multiple-view baseline scaling algorithm to recover Euclidean interpretations of the esti-

mated projective parameters. For the purposes of comparing methods, the synthetic in-

ternal parameters are used as nominal values in order to visualize the physical effects of

errors in estimation. For practical applications, the internal parameters would need to be

estimated using some form of self-calibration. The resulting camera configuration provides

a starting point for Euclidean structure from motion, bundle adjustment, or any other

application that requires initial knowledge of relative camera poses.
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4.3 Experimental Results

This section presents results of the minimal trifocal parameterization on an image sequence

that represents a common scenario. Due to asymmetry in the overlap between view pairs in

the sequence, the number of available point matches varies greatly from one pair to another.

We will demonstrate that the trifocal constraints can improve the accuracy of the estimated

epipolar geometry between views having few measured point matches.

View 1 View 2 View 3

Figure 4-1: Point correspondences for the santorini sequence. View pair (1,2) has 30
matches; pair (2,3) has 141 matches; pair (1,3) has 21 matches.

To test how well our minimal model estimates the camera geometry of view pairs in a

realistic imaging scenario, we compare it to two existing methods for determining epipolar

geometry without enforcing trifocal constraints: the linear 8-point algorithm [19] and the

nonlinear 7-parameter optimization [5], both described in 4.1.

The three sets of matching point pairs observed in the santorini image triplet shown

in Figure 4-1 are used to construct the simulation. Image features are matched between all
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3 view pairs using Zhang’s image matching technique [55]. The image matcher may be run

in several modes: the simplest mode uses standard correlation and relaxation techniques

to match point pairs, and the most sophisticated mode interleaves the correlation with

estimates of the epipolar geometry in order to discard false matches and constrain the

correspondence search. We run the image matcher in its basic correlation mode in order to

find as many points as possible, and then manually eliminate the many false point matches.

To perform controlled experiments, a synthetic ground truth for camera placement and

scene structure is constructed by estimating the trifocally constrained epipolar geometries

and projecting them to a Euclidean configuration. The synthetic Euclidean ground truth is

computed by introducing a set of internal parameters with a focal length of 520 pixels, the

principal point at the center of the image, and equally scaled, orthogonal image axes. The

estimated epipolar geometry is projected to Euclidean rotations and translations using the

standard method given in Section 4.2. The Euclidean scene point locations are constructed

by triangulating the optical rays from these camera positions through the image point

matches in each view [20], and the entire configuration is scaled, translated, and rotated

to a realistic world coordinate frame. Using the original distributions of matching image

points across frame pairs, we reproject the constructed scene points onto the images to

obtain noise-free synthetic image points. Figure 4-2 shows an overhead view of the camera

positions with the estimated scene points. Views 1 and 3 are the farthest apart and have

the fewest matching points.

4.3.1 Projective Parameter Accuracy

The synthetic image points are corrupted by Gaussian noise with .5 pixel variance, and

then three estimates are compared. All three epipolar geometries are initialized by the

linear 8-point algorithm. The nonlinear 7-parameter optimization refines the estimates

for view pairs (1,2) and (2,3), and the nonlinear 4-parameter optimization enforces the

trifocal constraints on the final estimate for view pair (1,3). This estimate is compared to

the estimates given by the 8-point algorithm alone, and by the 7-parameter optimization

without enforcing trifocal constraints.

Figure 4-3 shows the resulting parameter values. The epipole plots are embedded in
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Figure 4-2: Synthetic ground truth for santorini image sequence simulation. (a) Overhead
view of cameras and reconstructed scene points. (b) Side view of camera poses.
.

the Euclidean image plane. Note that they lie outside the boundaries of the 704 × 416

pixel image. The collineation plots are the three components of the 2 × 2 collineation

matrix, scaled by the fourth component. Figure 4-3(c) shows the estimates projected into

the trifocally constrained space.

Figure 4-4 shows the percent error in epipole estimation for the x and y components of

the epipoles in both views. For all methods, the x-component error is much greater than the

y-component error due to the well-known fact that epipole estimation has an anisotropic

uncertainty for many common configurations. Chapter 5 explores in more detail the charac-

teristics of the parameters and the objective function minimized over this parameter space.

The error comparisons Figures 4-3 and 4-4 show that each projective parameter is signifi-

cantly improved by the trifocal constraints, so fitting the epipolar geometry to a minimal

representation can improve accuracy.

4.3.2 Euclidean Parameter Accuracy

To examine the effect that the accuracy of projective parameters has on the rigid Euclidean

solution, we use the synthetic internal parameter matrix to project the epipoles and epipolar

collineations to Euclidean interpretations. Figure 4-5 and Tables 4.1 and 4.2 show the errors

in translations and rotations. Since the absolute scale of the configuration is not recoverable,
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Figure 4-3: Estimates of epipolar geometry parameters for views 1 and 3 of the santorini
sequence simulation. (a) Components of reconstructed epipoles, embedded in Euclidean space
and given in pixel coordinates. Left: epipole in view 1; right: epipole in view 3. (b) Three
elements of reconstructed collineation matrix, defined up to scale. (c) Trifocal projection
of each estimate. Left: the 2 epipole parameters; right: the 2 collineation parameters.
The minimal trifocal parameterization significantly improves the accuracy of the projective
parameters.

the units of the translation error are arbitrary, and only relative values are meaningful. The

minimal 4-parameter solution significantly improves the accuracy of the 3D camera poses.

Figure 4-6 shows the convergence paths for the santorini simulations. The epipole

search is projected onto the trifocal line, which frees the search from the local minimum

in the 7-dimensional search. The epipolar collineation is more difficult to visualize. Its 3

parameters are projected onto a 2D plane of collineations that preserve the trifocal line

mapping.

The convergence paths show that by fixing the trifocal lines, the constrained parameter

search is projected onto a lower-dimensional space of legal solutions that lead to the global

minimum. The value of the objective function is initially high because the initial minimal

projection has not yet been optimized and therefore does not necessary lie in a low-error

region of the space. For the constrained parameterization to converge correctly, it is nec-
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Translation Translation Rotation
Error : Norm Error : Angle (Radians) Error : Angle (Radians)

View 1 View 3 View 1 View 3 View 1 View 3
8 − Point 57.2 832 0.0045 0.2515 0.3014 0.3879

7 − Parameter 54.8 1006 0.0076 0.2594 0.0076 0.2594
4 − Parameter 21.1 130.0 0.0076 0.1247 0.1222 0.1358

Table 4.1: Error in 3D camera translations and rotations for santorini sequence, projected
from epipolar geometry estimates to Euclidean parameters using the simulated internal cam-
era parameters. Each estimate’s camera triplet is registered to the ground truth by alignment
of the middle view.

Translation Error : X Translation Error : Y Translation Error : Z
View 1 View 3 View 1 View 3 View 1 View 3

8 − Point 26.4710 781.8983 50.6244 279.6619 3.3175 51.2033
7 − Parameter 26.5383 946.8517 47.8757 335.1389 3.4357 55.9343
4 − Parameter 12.5590 116.3677 16.9385 57.7711 1.2070 3.2653

Table 4.2: Error in each component of the 3D camera translations for santorini sequence,
projected from epipolar geometry estimates to Euclidean parameters using the simulated
internal camera parameters. Each estimate’s camera triplet is registered to the ground truth
by alignment of the middle view.
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Figure 4-4: Percent error of epipole estimation for views 1 and 3 of the santorini sequence.
Top: x components of epipoles in each view. Bottom: y component of epipoles in each view.
The 4-parameter trifocally constrained algorithm improves both components of both epipole
estimates.

essary that the 7D point representing the true solution lies near or within the 4D solution

space. For a better understanding of these paths, Chapter 5 analyzes the local shape of the

objective function at various minimima, and discusses the relationships between valleys in

these surfaces and the geometry of camera configurations.

4.4 Summary

The experimental results in this chapter show how our minimally parameterized model of

three views can provide a good starting point for structure from motion or bundle adjust-

ment when three views of a scene have widely varying overlapping views. When the number

of point matches between a view pair is small, the epipolar geometry estimation is generally

less accurate. Our method overcomes this inaccuracy by enforcing consistency among all

three pairwise geometries. The next chapter provides a detailed analysis of the numerical

behavior of projective parameter optimization, and introduces a new parameterization with

improved numerical stability.

74



0 200 400 600 800 1000 1200 1400
−400

−300

−200

−100

0

100

200

300

400

C3

8−Point

C6

C2

C1

C5

C4

0 200 400 600 800 1000 1200 1400
−400

−300

−200

−100

0

100

200

300

400

C3

7−Parameter

C6

C2

C1

C5

C4

(a) (b)

0 200 400 600 800 1000 1200 1400
−400

−300

−200

−100

0

100

200

300

400
4−Parameter

C3
C6

C2

C1

C5

C4

(c)

Figure 4-5: Camera poses found by projecting epipolar geometry estimates to Euclidean
rotations and translations for the santorini sequence simulation. Estimates are superim-
posed over ground truth. Camera labels (1,2,3) are estimates and camera labels (5,6,7) are
the corresponding ground truth poses. Triplets are aligned with the middle view and units
are in world coordinates. (a) Linear 8-point algorithm. (b) Nonlinear 7-parameter opti-
mization without trifocal constraints. (c) Nonlinear 4-parameter optimization of trifocally
constrained model.
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search path, starting at the darkest (blue) and converging at the lightest (green). ’+’: initial
solution found by the 8-point algorithm. Circle: final value found by 7-parameter search.
Square: ground truth point.
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Chapter 5

Stable Projective

Parameterizations

The 3D analysis of camera geometry, when treated as a parameter estimation problem,

requires an evaluation function that measures how well the geometry defined by the pa-

rameters fits the observed image data. This chapter examines the properties of the point-

to-epipolar-line error function for both the 7D minimal parameterization of a view pair

and the 4D trifocally constrained parameterization of two views in a triplet. We examine

the shape of the objective function in the neighborhood of its global minimum and find

that low-error regions correspond to ambiguities in the projective description of a given

Euclidean camera configuration. Empirical studies of synthetic and real imagery illustrate

how the statistical uncertainty of trifocal lines influences the trifocally constrained parame-

terization. Furthermore, we show how the projective parameterizations of nearly degenerate

camera configurations lie near unstable points of the parameter space. Finally, we present

a stable parameterization of the bifocal and trifocal geometry that avoids such numerical

instabilities and improves the reliability of the optimization.

5.1 Objective Functions

The algorithm given in Chapter 4 for fitting a minimal projective model to three views

is compatible with any objective function that measures the fit of an epipolar geometry
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estimate to a set of matching point pairs. In this work, we use the point-to-epipolar-line

error function given in Equation 4.1 and restated here for convenience:

e2
l (mj,mk;p4

jk,p
7
ij ,p

7
ik) = d2

l (mj, lj) + d2
l (mk, lk). (5.1)

To see how this error measures the fit of an epipolar geometry estimate to image point

matches, consider the example in Figure 5-1. At any stage in the optimization process,

the set of parameters defining the epipolar geometry between two views defines a unique

epipole in each view and a mapping from any point in one image plane to an epipolar

line through the estimated epipole in the other image plane. Equation 5.1 measures how

well a current set of epipolar parameters fits the image matches by summing the squared

distances of the observed points to the estimated epipolar lines. This section examines

the shape of the evaluation function for various slices of the epipolar parameter space and

the trifocally constrained parameter space in order to gain a better understanding of how

different estimation methods perform.

View 1 View 3
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Figure 5-1: The epipolar lines defined by an estimate of the epipolar geometry between two
views. A set of epipolar parameters defines an epipole in each view and a transformation
of the pencil of epipolar lines through the points in one image to the epipolar pencil through
points in the other image. The point-to-epipolar-line error sums the Euclidean distance of
each observed image point to the epipolar line generated from its corresponding image point.

Although the objective function is theoretically defined for any point in the infinite im-

age plane, in practice, since a captured image has finite image boundaries, the function is

only evaluated over points in a small region of the image plane. Consequently, there are

potentially many different camera motions that might register similar error on the image
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data because they have nearly identical effects on the epipolar lines within the image bound-

aries. The effect of limited fields of view on uncertainty in camera motion understanding

has been studied theoretically and empirically in both the projective and Euclidean frame-

works [5, 33, 14].

The point-to-epipolar-line distance is a commonly used evaluation function for the epipo-

lar geometry. In addition, there are a variety of statistically motivated and geometrically

meaningful error functions that weigh an observed image point’s contribution to the sum

by its proximity to the estimated epipole or by the estimated statistical variance of the

image point’s measured position [53]. These functions may all be used in place of the

point-to-epipolar-line distance.

The true reprojection error for a camera model is the distance between an observed

image point and its predicted position under that model. To use this error for evaluating

the epipolar geometry of only two views, the predicted point positions may be added to

the set of unknown parameters to estimate. This gives us the cross-epipolar error over the

camera parameters and image point observations [29]. If we are willing to estimate the

3D projective positions of scene points by constructing projective camera matrices from the

epipolar geometry, then the true reprojection error may also be used, as is done in projective

bundle adjustment [34, 3]. While our minimally parameterized framework may be used

within both of these frameworks, in this work we choose to perform the optimization only

over the camera parameters. The resulting solution may then be used as a starting point

for initializing a full-fledged structure and motion optimization in either the uncalibrated

projective setting, or after estimating the internal parameters, in the calibrated Euclidean

setting.

When three views of a scene point are available, the true reprojection error may be

measured without re-estimating image point locations by simply finding the intersection of

two epipolar lines in an image [24]. This is equivalent to the point-transfer function used to

evaluate how well an estimated trifocal tensor matches a set of matching point triplets [36,

18]. However, since we are dealing with imagery in which many points that are matched

across two views are not matched in three views, we choose not to rely on the reprojection

error over point triplets. Oliensis [33] and Zhang [54] give comprehensive analyses of the
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conditions under which the point-to-epipolar-line error is a good approximation of the true

reprojection error.

Let us now examine the shape of the point-to-epipolar-line objective function in the

minimal space of epipolar geometry parameters. We compare the error surface in the 7D

space of free epipolar parameters to the error surface in the 4D space of trifocally constrained

epipolar geometry parameters. In both cases, the error surfaces have elongated valleys that

represent regions of uncertainty in the parameter space, as reported in [5].

To visualize the objective function over the epipolar parameters, we show 2D slices of

the error value in the neighborhood of the global minimum. Slices from the full 7D space

of unconstrained epipolar parameters exhibit shapes similar to slices of the 4D trifocally

constrained space of two views in a triplet, except that the global optimum in the constrained

space is closer to the true value when the 4D projection forces it to lie in the space of legal

solutions.

Consider the Euclidean camera configuration depicted in Figure 5-2. Given a fixed set

of internal parameters, the first four views have identical epipolar geometry relative to the

fifth camera, which is centered at the origin. This many-to-one relation is due to the four-

fold ambiguity in mappings from essential matrices to rotations and translation directions

(Section 4.2).
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Figure 5-2: Four Euclidean camera configurations corresponding to the same epipolar ge-
ometry relative to the fifth camera.

The canonical epipolar parameters for this configuration, as defined in Section 2.2.5, are

eij � [375, 125, 1]T (5.2)

eji � [125, 125, 1]T (5.3)
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Hij2×2 �


 .2576 −6.31

6.31 1


 (5.4)

p7
ij = {375, 125, 125, 125, .2576, −6.31, 6.31}. (5.5)
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Figure 5-3: Slices visualizing the objective function over the 7D space of epipolar parameters
on noise-free data, centered at the true solution. (a)-(b): Epipole parameter slices. (c)-
(e) Collineation parameter slices. Top: Darker regions have lower error values. Bottom:
contours of equal error value.

A block of scene points is generated in front of cameras 1 and 5 and projected into

each view. Figure 5-3 shows several 2D slices of the equal error contours of the error

function evaluated on the resulting noise-free image point matches. The epipole slices show

a well-behaved function with an obvious minimum, as expected when the epipole lies within

the image boundaries. The collineation slices show elongated regions of low error. These

elongated valleys correspond to the anisotropic covariance ellipsoids known to characterize

the uncertainty of the epipole and epipolar collineation parameters [5].

It is apparent that two components of the collineation are strongly anti-correlated:

p7
ij(6) = −p7

ij(7). Geometrically, the anti-correlated points along the valley in Figure 5-3(d)

correspond to small rotations of the cameras for which the collineation gradually rotates the

epipolar line pencil. Figure 5-4 shows the Euclidean interpretations of camera configurations

that have the same projective parameters given in Equation 5.5, except for the absolute

values of the off-diagonal elements, which are made to vary by a uniform scale factor so
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they remain anti-correlated:

eij � [375, 125, 1]T (5.6)

eji � [125, 125, 1]T (5.7)

Hij2×2 �


 .2576 −n

n 1


 (5.8)

p7
ij = {375, 125, 125, 125, .2576, −n, n}, (5.9)

for n ∈ (5, 10, 20, 50). Figure 5-4 shows the slight changes of rotation that result from these

changes in the collineation parameters. Though the surface in Figure 5-3(d) is shallow, there

is a well-defined minimum in this valley that corresponds to the true projective parameters.

In practice, we find that as long as the nonlinear optimization enters this valley, it will find

the globally optimal solution.

−0.6

−0.2

0.2

−0.2
0.2

0.6

0.2

0.6

1

1.4

Figure 5-4: Euclidean projections of multiple points in the valley of the objective func-
tion of Figure 5-3(d). The epipolar parameters for these views are identical except for the
collineation parameters p7

ij(6) and p7
ij(7) which are uniformly scaled.

5.2 Statistical Uncertainty of Projective Parameters

Having witnessed the potential ambiguities in projective parameter spaces, let us now exam-

ine the effect of image point noise on the error function and how it influences the accuracy

of the epipolar geometry estimates. The minimal trifocal model is applicable to situations

when the epipolar geometry of two of the camera pairs is accurately estimated before the
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remaining constrained epipolar parameters for the third pair are estimated. In practice,

image measurement error will result in uncertain estimates of the two initial camera pairs.

This section examines the effect of measurement error on the minimal 4-parameter search.

5.2.1 Epipole Covariance

When image point matches are corrupted with additive Gaussian noise, the resulting co-

variance in epipole estimation using the 8-point algorithm is anisotropic, so the area of

uncertainty is an elongated ellipse. Figure 5-5 shows the epipoles derived from multiple

trials of the 8-point algorithm on a fixed camera configuration and image point set, with

different instances of Gaussian noise added to the image point coordinates for different

trials.
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Figure 5-5: Elongated uncertainty regions for epipoles linearly estimated from repeated trials
of Gaussian noise added to image point matches. Each ’x’ marks the epipole estimate from
a different instance of noisy image data for a fixed camera configuration.

It is known that the anisotropic uncertainty of epipole estimates is due to the specific

geometry of the camera configuration [21]. If a camera translates parallel to the image plane,

the epipoles will tend toward infinity and the uncertainty along the direction of translation

will grow. The elongated uncertainty region coincides with valleys in the objective function’s

error surface.
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5.2.2 Trifocal Line Error
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Figure 5-6: Uncertainty in epipoles vs. trifocal lines. Image points matched between all pairs
in three images are corrupted with Gaussian noise. The circles mark independent estimates
of the epipoles for one view pair from different instances of noisy image data. The lines
mark independent estimates of the trifocal lines estimated using the other two view pairs.
(a) Trifocal line estimates properly constrain the solutions when their spread is narrower
than the independent epipole estimates. (b) When trifocal line estimates are more uncertain
than independent epipole estimates, they do not improve the epipolar geometry estimates.

Since the minimally constrained trifocal algorithm searches along trifocal lines computed

from the uncertain epipoles and collineations relating the two other camera pairs, it is

important to understand the error in trifocal line estimate. The following experiments

are performed on the simulated 3-view configuration described in an upcoming section

(Section 5.5.2). Again, we fix the camera and scene positions and generate 20 instances

of noisy image matches. Figure 5-6 shows the distributions of the estimated epipoles and

the estimated trifocal lines for each simulation. In each trial, a different subset of image

point matches is sampled, using the RANSAC algorithm. When the epipole variance is high

and the trifocal line bundle is tightly centered around the epipole, the trifocally constrained

model gives a more accurate estimate. When the epipole variance is low enough to lie within

the span of the trifocal lines, the unconstrained epipole estimates are more accurate than

the constrained ones. Table 5.1 shows the resulting error in Euclidean geometry estimates:

for the first example, the trifocally constrained model improves the translation estimate,
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View 1 View 2 View 3
Mean Translation Error : Norm

8−point 6.6782 6.3693 10.9846
7−parameter 6.3515 4.9028 9.5730
4−parameter 3.3469 3.4576 6.1696

View 1 View 2 View 3
Mean Rotation Error : Angle

8−point 0.0194 0.0206 0.0355
7−parameter 0.0044 0.0053 0.0078
4−parameter 0.0049 0.0054 0.0091

(a)

View 1 View 2 View 3
Mean Translation Error : Norm

8−point 2.4959 2.8364 3.9781
7−parameter 2.0947 2.2879 3.2396
4−parameter 1.8243 2.2509 2.9978

View 1 View 2 View 3
Mean Rotation Error : Angle

8−point 0.0098 0.0124 0.0221
7−parameter 0.0072 0.0078 0.0147
4−parameter 0.0052 0.0058 0.0107

(b)

Table 5.1: Mean errors in camera translations and rotations for the two examples in Fig-
ure 5-6. (a) The minimal, trifocally constrained model improves the translation of the
unconstrained estimate on average when the trifocal line variation is lower than the epipole
variation. (b) The minimal trifocal model offers only a slight improvement when the trifocal
lines vary more than the epipoles.

while in the second example it is slightly worse than the unconstrained epipolar geometry

estimate.

5.3 Critical Configurations

The regions of uncertainty shown in the Section 5.1 do not pose a problem for optimization

procedures assuming a reasonable initial point. However, when the initial point of the search

sits at a critical point of the objective function, there is a danger of entering and becoming

trapped in a valley that contains a local minimum. This section examines camera configu-

rations whose canonical parameterization does not lie at a stable point. Section 5.4 presents

a generalized parameterization of the epipolar geometry that avoids such instabilities.

View Pairs

The two-view models used in this work are for general motions, meaning they allow all

possible 3D translations, 3D rotations, and variations in all 5 internal parameters. When
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a camera motion is not rich enough to use all of these degrees of freedom, the epipolar

geometry takes on special forms. We consider the two common cases of pure translation

and coplanar images, and their effects on the epipolar geometry. By understanding these

cases, we can adapt the canonical parameterization to be numerically stable even when the

camera motion is near a critical configuration.

In the case of pure translation, the fundamental matrix takes the form,

Fij �




0 − −

− 0 −

− − −


 , (5.10)

where the components marked by ‘-’ depend on the camera translation and the internal

parameters. If we decompose the fundamental matrix in the canonical way, so the epipolar

collineation is defined by the upper left submatrix of the fundamental matrix (Section 2.2.5),

the collineation takes the form,

Hij2×2 �


 0 −

− 0


 .

Clearly, the component of Hij2×2 chosen for normalization (Section 2.2.4) should not be

small, so for small rotations it is important to choose this component with care to avoid

division by small values.

In the case where two cameras have parallel image planes and the 3D camera motion is

pure translation, the fundamental matrix takes the form,

Fij �




0 0 −

0 0 −

− − −


 . (5.11)

This is known as the affine fundamental matrix [35], and its epipoles are at infinity, so they

take the form,

eij � [−,−, 0]T
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eji � [−,−, 0]T ,

as can be verified by checking that Fijeij = 0 and FT
ijeji = 0. Only the first or second

components of the epipoles may therefore be used for normalization. If the translation is

horizontal, the epipoles are still at infinity, and they now take the even simpler form,

eij � [−, 0, 0]T

eji � [−, 0, 0]T .

Figure 5-7 shows shows this scenario. Once again, it is important to choose a nonzero

normalization component for each epipole to ensure numerical stability.

Figure 5-7: The affine epipolar geometry. The 3D camera translation is parallel to both
image planes, so the epipoles lie at infinity and the epipolar lines are horizontal.

The problem of multiple model selection for camera geometry is an important topic of

study [44, 23]. While a truly degenerate camera motion calls for a simplified model, in

practice there is a continuum of increasingly simpler camera motions, and it is unclear at

what point a new model should be adopted. It is nevertheless useful to examine the effects of

these motions on the shape of the objective function and the pitfalls they pose for nonlinear

estimation. This analysis leads us to generalize the existing canonical parameterization

to handle near-degeneracy without losing valuable information by fitting the data to a a

simplified model.

The next section examines what the objective function looks like for various synthetic
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critical camera motions. Section 5.4 introduces a generalization of the canonical parame-

terization that takes these potential singularities into consideration. Section 5.5.2 presents

experimental results of applying this robust parameterization to the trifocally constrained

parameter estimation algorithm from the previous chapter.

Error Surfaces

Consider the camera configuration shown in Figure 5-8. The motion between the two

cameras is a nearly pure translation, and the camera planes are nearly parallel.

−1.5
−0.5

0.5

−0.7
−0.2

0.2

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
C2

C1

Figure 5-8: Synthetic critical camera configuration.

Now let us introduce internal parameters, construct a projective parameterization of

this configuration, and examine the objective function measured over the imaged scene

points. Figure 5-9 shows the viewed image points for a focal length of 500 pixels, no skew

in the camera axes, and principal point centered in the image. The canonical projective

parameterization is

eij � [100000, 10, 1]T
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Figure 5-9: Visible image points for the synthetic configuration in Figure 5-8, using a focal
length of 500 pixels.

eji � [100000, 10, 1]T

H2×2ij �


 0 −14704

14704 1.0




p7
ij = {100000, 10, 100000, 10, 0,−14704, 14704}.

Figure 5-10 shows the level contours of the objective function. The elongated regions of

low error are due to the expected ambiguity in the solution: the y-coordinates of the epipoles

are well-constrained by the image data, but the x-coordinates are uncertain because they

have large horizontal components and small vertical components. The horizontal epipolar

lines are largely unaffected by local changes in the x-coordinates of the epipoles. The upper

left component of the epipolar collineation, p7
ij(5), is not sensitive to small changes, but the

two off-diagonal components, p7
ij(6) and p7

ij(7), are strongly anti-correlated. The ratios of

the collineation parameters are more important than their absolute values. The off-diagonal

elements may vary uniformly as long as their magnitudes are much larger than the diagonal

elements, and the error will still be low because the epipolar geometry will remain nearly

affine. In practice, we find that if this valley is entered by the nonlinear optimization, a

global minimum which corresponds to the optimal solution will be found.

Now examine the objective function in the neighborhood of a different point in the same

parameter space by changing the collineation parameters as follows:

eij � [100000, 10, 1]T

eji � [100000, 10, 1]T
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Figure 5-10: Slices visualizing the objective function over the 7D space of epipolar parameters
on noise-free data for a nearly affine epipolar geometry. See text for explanation. (a)-(b):
Epipole parameter slices. (c)-(e) Collineation parameter slices. Top: Darker regions have
lower error values. Bottom: contours of equal error value.
.

H2×2ij �


 0 −1.0562

1.061 1.0




p7
ij = {100000, 10, 100000, 10, 0, −1.0562, 1.061}.

This point in parameter space corresponds to the same Euclidean configuration but a dif-

ferent set of internal camera parameters. We see in Figure 5-11 that there is a saddle

point leading to different valleys separated by high-error peaks because the ratios of the

collineation elements are unstable near the origin. If the nonlinear optimization is initialized

in this region of the search space, there is a danger that it will fall into the wrong valley

and become trapped in a local minimum. This synthetic example highlights the impor-

tance of choosing a parameterization for which the optimal solution is not near an unstable

point of the parameter space. The next section presents a generalization of the canonical

parameterization which automatically takes into account the geometry of the configuration

to avoid such coordinate singularities and numerical instabilities. Sections 5.5.1 and 5.5.2

present empirical results for these scenarios.
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Figure 5-11: When the solution lies near a saddle point of the objective function, there is
a higher chance that the search algorithm will be initialized close to a valley that contains
a local minimum instead of the global minimum. (a)-(b): Epipole parameter slices. (c)-
(e) Collineation parameter slices. Top: Darker regions have lower error values. Bottom:
contours of equal error value.

View Triplets

In the case that the critical configurations discussed above occur for pairs of views in an

image triplet, Section 5.4 shows how to ensure that the trifocally constrained epipolar

parameter model is still well-defined, as long as the trifocal plane among three views is

well-defined.

The only configuration in which the trifocal plane is not defined is when the optical

centers of the three cameras are collinear. When the optical centers are aligned, the trifocal

plane does not exist, so the trifocal lines are not defined (Section 2.3.4). This scenario may

be detected at the initialization stage of the estimation algorithm in Section 4.1 by noting

that the epipolar geometries of one view with respect to each of the other two views are

identical or nearly identical. In Figure 2-10, since the baseline directions among all three

views are identical, the epipoles for view pair (i, j) are identical to the epipoles for the other

view pairs: eij � eik and eji � eki. Furthermore, the epipolar planes are identical for all

pairs, so the epipolar collineation for pair (i, j) is simply a composition of the two other

collineations: hij(li) � hkj(hik(li)). Therefore, once the epipolar geometries of two of the

pairs is fixed, the epipolar geometry of the third pair is completely determined.
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In practice, one might examine the three initial estimates of the pairwise epipolar ge-

ometries, and use the similarities of the epipoles and collineations to decide whether or not

the views are collinear and hence whether or not to apply the trifocal constraints to the

epipolar parameters. The general problem of detecting model degeneracy is an important

issue in multiple view camera analysis and is discussed briefly in Chapter 6.

In order to obtain a complete projective representation of a collinear camera set, it

is necessary to use the trilinear constraints on point triplets [36, 13]. Because of these

scenarios, the problems of degeneracy detection and multiple model hypothesis selection

are important issues in projective camera modeling. Torr presents a case-based algorithm

for using information criteria to choose the simplest projective model that is not degenerate

for a given set of data [44].

5.4 Stable Parameterization

This section generalizes the canonical parameterization of the epipolar geometry to improve

its numerically stability during estimation. Recall that the canonical parameterizations

given in Section 2.2.4 are not unique. First, there are 3 × 3 × 4 combinations of normal-

ization indices for the epipoles and the epipolar collineation, each resulting in a distinct

minimal representation of the same epipolar geometry. In theory, these parameterizations

are all equivalent in that they produce the same epipolar pencils and therefore enforce the

same constraints on matching image points. In practice, however, they differ in numerical

stability, causing widely differing behaviors during optimization. Statistical methods for

finding the choice of normalization components that results in a numerically well-behaved

decomposition of an estimated fundamental matrix have been explored in [5]. However,

this countable set of parameterizations only corresponds to those minimal parameteriza-

tions that use canonical basis elements to represent the epipolar pencils (Equations 2.32

to 2.35).

This section presents a more general class of parameterizations of the epipolar geometry

for two views and for three trifocally constrained views. The parameterization is designed

to be stable and well-defined in the parts of the search space explored during optimization.

92



It allows an arbitrary choice of basis for the epipolar pencil, and an arbitrary choice of

basis points for the trifocal line. The 7-parameter and 4-parameter parameterizations are

automatically chosen, based on the initial estimate of the epipolar geometry. Sections 5.5.1

and 5.5.2 give experimental evidence that the extended parameterization results in accurate

estimates of the epipolar geometry.

5.4.1 Normalization

The canonical minimal parameterization of the epipolar geometry given in Section 2.2.4

requires a choice of indices for normalizing the epipole and the epipolar collineation. Clearly,

these components should be chosen carefully to avoid division by very small values. Csurka,

et al., address this issue by choosing the normalization indices that maximize the rank

of the Jacobian of the mapping from fundamental matrices to the epipolar parameters

at each step of the optimization [5]. For the epipole normalization, we adopt a simpler

method of choosing the largest component of the initial epipole estimate, an approach also

used in [2]. Typically, in real imagery with primarily horizontal translation, this will be

the x-component, so the resulting epipole representation takes the form [1,−,−]T . The

same step is taken for the epipolar collineation. To avoid division by a small value, the

largest component is chosen for normalization. The next section presents a more general

method of representing the epipolar collineation that does not depend solely on the epipole

normalization index for stability.

For the trifocally constrained epipolar parameterization, recall that one component of

the epipolar collineation is chosen to be dependent on the other collineation components

(Equation 3.29). To ensure that the expression is well-defined, the choice of index c3 for the

dependent collineation component must be made such that the coefficient k(c3) is not close

to zero. From Equation 3.27, it is clear that if we can guarantee that the representations

[αj , βj ]T and [αk, βk]T of the trifocal lines have nonzero components, then the coefficients k

will be nonzero. The next section provides a geometrically principled way of automatically

finding such a parameterization.
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5.4.2 Epipolar Pencil Basis

Recall from Sections 2.2.4 and 2.2.5 that the parameterization of the epipolar collineation

depended on the basis points (pj ,qj) and (pk,qk) used to represent the epipolar pencils

in views j and k, respectively (Figure 5-12). Choosing these to be canonical basis vectors

allowed the collineation elements to be directly observable as components of the fundamental

matrix. However, these basis points are not necessarily good representations of the epipolar

pencil. For example, if the epipoles are represented by their first two coordinates, the

canonical canonical basis vectors are the horizontal and vertical points at infinity. If the

epipoles lie to the left or the right of the image, then this representation will have a high

coefficient for one basis point and a low coefficient for the other basis point (Figure 5-13).

jp

jq

jke

jl kp

kq

kje

kl

jkh

jp

jq

jke

jl kp

kq

kje

kl

jkh

Figure 5-12: Two basis points in each view define the epipolar pencil as a 1-parameter
family.

jq

jp

jke

jl

Figure 5-13: An example of when the canonical basis vectors are a poor representation of
the epipolar pencil. The epipolar lines for many observed image points will have a large
component for pi and a vanishing component for qi.

The generalized parameterization chooses the basis points that ensure a balanced set of

coefficients for the epipolar lines that pass through the image. Consider Figure 5-14, and

suppose the labeled epipole is an initial estimate or an intermediate estimate found during

optimization. Then the two basis points for parameterizing the pencil may be chosen to

lie equidistant from the image center along a line that is normal to the line containing the

image center and the estimated epipole. The distance of each basis point is chosen to be of
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the same order of magnitude as the epipole estimate, measured in image pixels. Using this

choice of basis points, we guarantee that the two coefficients in Equations 2.15 and 2.20 are

equal and nonzero.

Note that these are precisely the desired conditions for the coefficients of the trifocal

line representation to be stable, as discussed in the previous section on normalization, since

it guarantees that the denominator of Equation 3.29 is nonzero. However, since the trifocal

line does not necessarily cross through the interior of the image, there may be a trade-off in

how well the epipolar pencil basis represents the epipolar lines through the observed data

points vs. how well it represents the trifocal line in specific.

jp

jq

jke

jjjjj qpl �� ��

ne

Figure 5-14: Generalized parameterization of the epipolar geometry. The basis points of the
epipolar pencil are automatically chosen to lie equidistant from the image center along the
normal en to the estimated epipole eij. The coefficients αi and βi representing the epipolar
lines through the image are well-balanced and nonzero.

5.4.3 Trifocal Line Basis

In the trifocally constrained model, each epipole is represented by a single parameter along

the trifocal line (Section 3.2). The choice of points (xj ,yj) on the trifocal line tj (Equa-

tion 3.19) affects the numerical stability of the epipole search since the parameter γj will

tend toward 0 or infinity as the epipole approaches the basis points. To automatically com-

pute a stable parameterization of the trifocal line, the two basis points are chosen to be

equidistant from the estimated epipole and of the same order of magnitude, as depicted in

Figure 5-15.

The next two sections illustrate the stability and accuracy of estimating the generalized

parameterization.
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Figure 5-15: A stable basis for the trifocal line is chosen by finding points equidistant from
the epipole and of the same order of magnitude as the epipole norm, measured in image
pixels.

5.5 Experimental Results

5.5.1 Synthetic Sequence

To test the estimation of the trifocally constrained epipolar geometry using the generalized

parameterization from the previous section, we construct a set of cameras for which view pair

(1,3) has a nearly affine epipolar geometry. Figure 5-16 shows the ground truth Euclidean

camera poses and the synthetic image points generated using a focal length of 500 pixels,

orthogonal image axes, and image-centered principal point.

The image points are corrupted by Gaussian noise with σ = .5. The canonical pa-

rameterizations of the initial linearly estimated epipolar geometry are highly unstable and

the estimation is quickly trapped in a local minimum far from the true epipolar geometry.

Figure 5-17 shows the error surface centered at the true solution when the epipoles are

normalized by their first components. Similar saddle points are found in the 4-parameter

space.

Figure 5-18 shows the error surface near the true epipolar geometry for the generalized

parameterization, where now the basis points of the epipolar pencil are automatically chosen

based on the initial linear estimate of the epipolar geometry. The error surface still has

elongated regions of uncertainty, but the saddle points are no longer in the vicinity of the

point representing the true solution. The estimated parameters are shown in Figure 5-19,

and the percent errors of the epipole estimates in Figure 5-20. The trifocally constrained
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Figure 5-16: Synthetic camera configuration and image point matches for testing the es-
timation of epipolar geometry using the generalized parameterization. The point matches
between view pair (1,3) are decimated to simulate the asymmetric availability of matches
among pairs in a triplet.

solution improves the accuracy of the epipolar parameters. Using the synthetic internal

parameters to project the projective representation to a Euclidean camera configuration,

we find that the trifocal constraints improve the accuracy of the camera poses as well

(Figure 5-21). The errors in translations and rotations are given in Table 5.2.

5.5.2 Real Image Sequence

This section analyzes an image sequence for which the relative motion between each camera

pair is nearly pure translation. The example illustrates how the canonical parameterization

of the true camera configuration lies close to a discontinuity in the objective function over

the epipolar parameters. In addition to highlighting the importance of choosing a numeri-

cally well-behaved projective parameterization, the example reveals how the valleys of the

objective function correspond to families of epipolar parameters that correspond to nearly
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Figure 5-17: Saddle points in the objective function surface for the unstable canonical pa-
rameterization of the synthetic sequence.

identical Euclidean configurations.

The same procedure is used to set up the simulation as was used for the santorini

sequence in Section 4.3. The ground truth is constructed by first estimating the camera

geometry from matching point pairs found by the most lenient mode of Zhang’s image-

matching algorithm [55], with false matches manually removed. Figure 5-22 shows the three

pairs of frames and their matched feature points. The synthetic ground truth for camera

placement and scene structure is defined by independently estimating the three pairwise

epipolar geometries and projecting them to a Euclidean configuration (Section 4.2). The

focal length is defined to be 1500 pixels, the optical axis is defined to intersect the image

center, and the image axes are defined to be orthogonal. Scene points are triangulated,

and then projected into each view. Only the reprojected images of the visible points from

the original image triplet are used as true, noise-free image point matches. Figure 5-23

shows the simulated ground truth camera configuration, scaled, translated, and rotated to

a realistic world coordinate frame.

To compare methods, Gaussian noise with unit pixel variance is added to the synthetic

image points. Figure 5-24 compares the linear 8-point algorithm, the independent nonlinear

7-parameter optimization, and the trifocally constrained nonlinear 4-parameter optimiza-

tion of the epipolar geometry between views 1 and 3. The epipole estimation is greatly

improved by the minimally parameterized search, but the collineation estimate is incor-
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Figure 5-18: Objective function surface and equal error contours for the generalized parame-
terization of the synthetic sequence. The region surrounding the true solution does not have
saddle points, so the minimum is easily found, as shown in Figure 5-19.

rect. This behavior is due to the numerical instability of the canonical parameterization,

as discussed in the previous section.

The shape of the error surface for the canonical parameterization is shown in Figure 5-

25. The collineation slices of the 7D space show that the true solution lies near a saddle

point. The 4D trifocally constrained projection lands in the wrong valley, as can be seen in

the collineation slice of Figure 5-26.

The convergence paths for these optimizations show that the trifocal line estimate pro-

vides a good constraint for the epipole search (Figure 5-27). However, the collineation search

is trapped in a valley whose local minimum is far from the true solution. As discussed in

Sections 5.3, the origin is often an unstable point for the collineation parameterization.

When the solution lies far from this critical point, there is little danger of searches falling

into local minima, but when the initial estimate lies close to the discontinuity, the projection

onto the trifocally-constrained surface can trap the solution in the wrong valley, as in this

case. To avoid this behavior, it is essential to choose a stable parameterization.

The generalized parameterization of the knossos sequence is automatically computed

from the initial linear estimate of the epipolar geometry. Figure 5-28 shows the pencil basis

points and trifocal line basis points chosen for views 1 and 3 of the sequence.

Figure 5-29 shows the solutions for the three different algorithms using the generalized
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Figure 5-19: Comparison of epipolar parameters found by three methods on noisy image
points for synthetic image sequence. The trifocally constrained epipolar geometry estimate,
marked by an ’x’, is the most accurate. The square marks the true solution. The errors in
the collineation parameters are small due to the small amount of rotation between views.

parameterization. Figures 5-30 and 5-31 show that the objective functions for the trifocally

constrained estimation are no longer near saddle points. Figure 5-32 shows the percent error

in epipole estimate for the three methods. Figure 5-33 shows the Euclidean projections of

the epipolar parameters, and Table 5.3 gives the errors.
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Figure 5-20: Percent error in x-coordinate of epipole estimates for three compared methods.
The error in the estimation of the epipole y-coordinates is negligible for all three estimates
because the translation between views is horizontal.
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3D Translation 3D Translation 3D Rotation
Error : Norm Error : Angle (Radians) Error : Angle (Radians)

View 1 View 3 View 1 View 3 View 1 View 3
8 − Point 32.0306 24.7442 0.0004 0.0315 0.2963 0.0923

7 − Parameter 13.8980 10.5767 0.0007 0.0155 0.1104 0.0429
4 − Parameter 1.6989 2.9218 0.0004 0.0032 0.0113 0.0129

Translation Error : X Translation Error : Y Translation Error : Z
View 1 View 3 View 1 View 3 View 1 View 3

8 − Point 20.7764 5.1052 21.1159 20.1702 12.1826 13.3931
7 − Parameter 8.6674 1.1581 9.6358 8.4125 5.0182 6.3052
4 − Parameter 0.8525 1.3021 1.2774 2.5065 0.7267 0.7478

Table 5.2: Errors in 3D camera translations and rotations for synthetic sequence, projected
from the epipolar geometry estimates to Euclidean parameters using the synthetic internal
camera parameters. Each estimate’s camera triplet is registered to the ground truth by
alignment of the middle view.

3D Translation 3D Translation 3D Rotation
Error : Norm Error : Angle (Radians) Error : Angle (Radians)

View 2 View 3 View 2 View 3 View 2 View 3
8 − Point 4.6415 27.9907 0.0439 0.1857 0.0030 0.1030

7 − Parameter 4.6805 25.0232 0.0322 0.1742 0.0054 0.0939
4 − Parameter 4.6805 8.7066 0.0322 0.0698 0.0054 0.0336

Table 5.3: Errors in 3D camera translations and rotations for generalized parameterization
of the knossos sequence, projected from epipolar geometry estimates to Euclidean param-
eters using the synthetic internal camera parameters. Each estimate’s camera triplet is
registered to the ground truth by alignment of the first view.
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Figure 5-21: Camera poses found by projecting the epipolar geometry estimates for the
synthetic sequence to Euclidean rotations and translations. Estimates are superimposed
over ground truth. Camera labels (1,2,3) are the estimates and camera labels (5,6,7) are
the corresponding ground truth poses. Triplets are aligned with view 2 and plots are in
world units. (a) Linear 8-Point algorithm. (b) Nonlinear 7-Parameter optimization without
trifocal constraints. (c) Nonlinear 4-Parameter optimization of trifocally constrained model.

102



View 1 View 2 View 3

Figure 5-22: Point correspondences for knossos sequence. View pair (1,2) has 60 matches;
pair (2,3) has 38 matches; pair (1,3) has 18.
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Figure 5-23: Synthetic ground truth for knossos image sequence simulation. (a) Overhead
view of cameras and reconstructed scene points. (b) Side view of camera poses.
.
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Figure 5-24: Estimates of the epipolar geometry parameters for views 1 and 3 of the knossos
sequence simulation. (a-b) Components of the reconstructed epipoles, embedded in Eu-
clidean space and given in pixel coordinates. (c-e) Three free components of the recon-
structed collineation matrix defined up to scale. (f-g) Trifocally constrained projection of
each estimate. (e) Two epipole parameters along the trifocal line; (f) Two free collineation
parameters. The epipole accuracy is improved by the minimally constrained model, but the
collineation diverges. Compare to Figure 5-29.
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Figure 5-25: Top: Objective function for the 7D bifocal parameter space on noisy data cen-
tered at the 7-parameter estimate. Bottom: Equal error contours. (a-b) Epipole parameter
slices. (c-e) Collineation parameter slices. The optimal solution lies near a saddle point of
the objective function.
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Figure 5-26: Top: Objective function for knossos simulation. Slices of error in minimal
4D parameter space on noisy point matches, centered at the 4-parameter estimate. Bottom:
Equal error contours. (a) Epipole parameter slices. (b) Collineation slices. The projection
onto the trifocally constrained parameter space sends the 4-parameter estimate into the
wrong valley of the objective function.
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Figure 5-27: Convergence of the 4-parameter search for knossos simulation. (a-b) Epipole
parameter convergence for 4-parameter search along the trifocal line. (c) Objective function
value during search. Solid circles show the search path, starting at the darkest (blue) and
converging to the lightest (green). The initial solution found by the 8-point algorithm marked
by a ’+’. The 7-parameter solution is marked by an open circle. The ground truth is marked
by a square.

106



−1000 −500 0 500 1000 1500 2000 2500 3000 3500

−200
0

200
400
600
800

view i

(a)

−1000 0 1000 2000 3000 4000

0

500

1000
view j

(b)

Figure 5-28: Basis for the stable parameterization, computed from initial epipole estimates.
The rectangle indicates the image boundaries; the epipole is marked by the blue circle to the
right of the image; the basis points for the epipolar pencil are marked as red circles above
and below the image; the basis points for the trifocal line are marked as green squares.
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Figure 5-29: Estimates of the epipolar geometry parameters for views 1 and 3 of the knossos
sequence simulation using the generalized parameterization. (a-b) Components of the recon-
structed epipoles, embedded in Euclidean space and given in pixel coordinates. (c-e) Three
free components of the reconstructed collineation matrix defined up to scale. (f-g) Trifo-
cally constrained projection of each estimate. (e) Two epipole parameters along the trifocal
line; (f) Two free collineation parameters. Accuracy of all parameters is improved by the
trifocally constrained model. Compare to Figure 5-24.
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Figure 5-30: Top: Objective function for the generalized parameterization of the knossos
simulation. Slices of the error in 7D space, on noisy point matches. Darker shade indicates
lower error. Bottom: equal error contours (a-b) Epipole parameter slices. (c-e) Collineation
slices.
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Figure 5-31: Top: Objective function for the generalized parameterization of the knossos
simulation. Slices of error in minimal 4D parameter space on noisy point matches, centered
at the 4-parameter estimate. Darker shade indicates lower error. Bottom: Equal-error
contours. (a) Epipole parameter slices. (b) Collineation slices.
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Figure 5-32: Percent error in epipole estimates for the three compared methods using gen-
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Figure 5-33: Solutions to camera rotations and translations superimposed onto ground truth
for the stable parameterization of the knossos simulation. Camera labels (1,2,3) are the
estimates and camera labels (5,6,7) are the corresponding ground truth poses. Camera
configurations are aligned with first view of ground truth. Camera poses are extracted from
pairwise fundamental matrices computed by (a) 8-point algorithm, (b) nonlinear 7-parameter
optimization for each independent camera pair, (c) minimal parameterization: 7-parameter
optimization for adjacent views, 4-parameter constrained optimization for views 1 and 3.
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Chapter 6

Discussion

This final chapter discusses several important directions for the study of minimally param-

eterized projective models of multiple view geometry.

6.1 Future Directions

6.1.1 Robustness and Degeneracy

A key issue in modeling any view configuration with a fixed geometric model is the joint

problem of image point robustness and model degeneracy. Robust methods, such as the

RANSAC algorithm used in this work, attempt to delete outliers from a set of image point

matches and fit a geometric model using only a subset of data points that provide a good fit.

Model degeneracy occurs when the chosen image point set does not sufficiently constrain the

geometric model, so many inaccurate estimates might explain the data equally well. Torr

treats these two issues simultaneously for the problem of 3D camera analysis by designing

methods that automatically determine a robust subset of point matches while detecting

degeneracies in the camera configurations [42, 44].

These methods are ultimately necessary for applying the minimally parameterized mod-

els described in this work to the general analysis of image sequences. First, robustness

measures are useful for determining which view pairs have sufficient reliable point matches

to guarantee accurate independent estimates of their epipolar relations and which pairs do

not. Those view pairs whose correspondences have too many outliers are good candidates

111



for the trifocally constrained epipolar parameter estimation.

Second, degeneracy detection for view triplet configurations is important for deciding

which views may be used to constrain others. For instance, three collinear views will not

have stable trifocal line estimates, so such views should not be selected for enforcing the

general trifocal constraints on epipolar geometries. Even when three views are not collinear,

the special cases of pure rotation, pure translation, or true affine epipolar geometry should

be detected and handled by a simplified three-view model.

6.1.2 Linking Models

Several interesting questions arise from considering degenerate camera motions and point

configurations. For instance, if the only reliable point matches between two view pairs

are coplanar in the scene, there is insufficient data to compute the epipolar geometry.

One question to ask is whether the trifocal constraints from other views provide enough

additional information to determine the fundamental matrix from the coplanar scene points.

It may be that the elegant relations between the homographies relating two views of coplanar

scene points and the fundamental matrices may be exploited [27].

More generally, if a global minimal model of N views is desired, it is necessary to

establish the dependencies among N epipolar geometries. For instance, if all consecutive

triplets in an image sequence are trifocally constrained, that is, if the epipolar geometry

between each first and third view pair in a triplet is trifocally constrained using the middle

view, then a total of 7(N − 1) + 4(N − 2) = 11N − 15 parameters have been used, 7

parameters for each of the N − 1 consecutive pairs, and 4 parameters for each of the non-

consecutive pairs in the N − 2 triplets. In practice, it may not be the case that consecutive

views in a collection have reliably matched points, so the partition of epipolar parameters

into independent and dependent sets will be more complex.

These topics are important for future work in understanding how minimally parame-

terized projective models can best be leveraged to estimate global camera geometry from

arbitrarily long uncalibrated image sequences.
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6.2 Summary

This thesis has addressed the general problem of how to find globally consistent and accu-

rate estimates of multiple-view camera geometry from uncalibrated imagery of an extended

scene. For three uncalibrated views in general position, we have presented a new, min-

imally parameterized projective model of the trifocal geometry when the optical centers

of the cameras are in general position. We have derived the geometric constraints on the

three pairwise epipolar geometries in a view triplet, and constructed a representation that

guarantees agreement between all pairwise relations.

To test this model, a nonlinear optimization algorithm for estimating the minimally

parameterized model was designed and tested on synthetic and real image sequences. The

estimation procedure takes as input three sets of matching point pairs, one for each view

pair, and returns a set of dependent epipolar parameters that correspond to a unique projec-

tive camera configuration. The results are tested on commonly occurring practical scenarios

in which one view pair in a triplet has less view overlap and therefore fewer point matches

than the other two pairs. The results show that the trifocally constrained epipolar geometry

improves the accuracy of view pairs with fewer point matches.

The numerically stability of the minimally parameterized model estimation procedure

is tested by analyzing the local shape of the objective function in the parameter space eval-

uated over matching image points. The lower dimensionality of the trifocally constrained

epipolar parameter space allows optimization procedures to settle at a more accurate global

optimum than the unconstrained parameter space. In addition, critical camera config-

urations are shown to be unstable under certain parameterizations. A new, generalized

parameterization that adapts the representation of the epipolar and trifocal geometry to

the current estimate is presented and tested on synthetic and real uncalibrated imagery.

The results show that the objective function of the generalized parameterization is numer-

ically stable, and the trifocally constrained estimation improves the accuracy of geometry

estimates.
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